OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 13 — Jul. 1, 2014
  • pp: 4053–4056

Extinction symmetry for reciprocal objects and its implications on cloaking and scattering manipulation

Dimitrios L. Sounas and Andrea Alù  »View Author Affiliations


Optics Letters, Vol. 39, Issue 13, pp. 4053-4056 (2014)
http://dx.doi.org/10.1364/OL.39.004053


View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using Lorentz reciprocity and power conservation, we prove that the extinction cross section of an arbitrarily shaped scatterer is always the same when illuminated from opposite directions and with the same polarization. For lossless and passive objects, this finding implies identical scattering cross sections for opposite excitations, with relevant implications on cloaking designs and scattering suppression schemes. This scattering symmetry can be broken by introducing absorption into the system, providing a path toward large scattering asymmetries when combined with Fano interference.

© 2014 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(290.5825) Scattering : Scattering theory
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Scattering

History
Original Manuscript: April 29, 2014
Revised Manuscript: May 29, 2014
Manuscript Accepted: May 30, 2014
Published: June 30, 2014

Citation
Dimitrios L. Sounas and Andrea Alù, "Extinction symmetry for reciprocal objects and its implications on cloaking and scattering manipulation," Opt. Lett. 39, 4053-4056 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-13-4053


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Landy and D. R. Smith, Nat. Mater. 12, 25 (2012). [CrossRef]
  2. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, Phys. Rev. Lett. 106, 033901 (2011). [CrossRef]
  3. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, Nat. Commun. 2, 176 (2011). [CrossRef]
  4. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Phys. Rev. Lett. 106, 213901 (2011). [CrossRef]
  5. A. Mostafazadeh, Phys. Rev. A 87, 012103 (2013). [CrossRef]
  6. L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, Nat. Mater. 12, 108 (2012). [CrossRef]
  7. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Nature 488, 167 (2012). [CrossRef]
  8. Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett. 106, 093902 (2011). [CrossRef]
  9. X. Yin and X. Zhang, Nat. Mater. 12, 175 (2013). [CrossRef]
  10. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, Phys. Rev. Lett. 97, 167401 (2006). [CrossRef]
  11. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2940 (2008).
  12. E. Plum, V. A. Fedotov, and N. I. Zheludev, Appl. Phys. Lett. 94, 131901 (2009). [CrossRef]
  13. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, Phys. Rev. Lett. 104, 253902 (2010). [CrossRef]
  14. P. Grahn, A. Shevchenko, and M. Kaivola, Phys. Rev. B 86, 035419 (2012).
  15. P. Grahn, A. Shevchenko, and M. Kaivola, Opt. Express 21, 23471 (2013). [CrossRef]
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  17. R. F. Harrington, Time Harmonic Electromagnetic Fields (Wiley, 2001).
  18. R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Science 343, 516 (2014). [CrossRef]
  19. D. L. Sounas, C. Caloz, and A. Alù, Nat. Commun. 4, 2407 (2013). [CrossRef]
  20. If ε^i is the polarization vector of an elliptically polarized wave propagating in the n^i direction, ε^i* is the polarization vector of the same wave propagating in the −n^i direction. This can be easily understood by choosing a coordinate system where n^i=z^ and the x axis is parallel to the major axis of the polarization ellipse so that ε^i=ax^+iby^, where a and b are real numbers. A rotation of the coordinate system by 180° around the x axis results in a wave propagating in the −z^ direction with a polarization vector ε^i*=ax^−iby^.
  21. P.-S. Kildal, A. A. Kishk, and A. Tengs, IEEE Trans. Antennas Propag. 44, 1509 (1996). [CrossRef]
  22. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).
  23. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited