OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 14 — Jul. 15, 2014
  • pp: 4120–4123

Ultralong photonic nanojet formed by a two-layer dielectric microsphere

Yuecheng Shen, Lihong V. Wang, and Jung-Tsung Shen  »View Author Affiliations

Optics Letters, Vol. 39, Issue 14, pp. 4120-4123 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photonic nanojet is a highly focused optical beam with a subwavelength waist on the shadow side of the sphere. Successful far-field applications require long nanojets that extend afar. Using the exact Mie theory, we show that ultralong nanojets can be generated using a simple two-layer microsphere structure, using conventional optical materials that are readily available. In particular, we show that for a glass-based two-layer microsphere, the nanojet has an extension of 22 wavelengths. We also show that long nanojets can be formed using semiconductors at infrared frequencies in free space.

© 2014 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(350.3950) Other areas of optics : Micro-optics
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

Original Manuscript: May 15, 2014
Manuscript Accepted: June 4, 2014
Published: July 7, 2014

Yuecheng Shen, Lihong V. Wang, and Jung-Tsung Shen, "Ultralong photonic nanojet formed by a two-layer dielectric microsphere," Opt. Lett. 39, 4120-4123 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Chen, A. Taflove, and V. Backman, Opt. Express 12, 1214 (2004). [CrossRef]
  2. X. Li, Z. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005). [CrossRef]
  3. E. Mcleod and C. B. Arnold, Nat. Nanotechnol. 3, 413 (2008). [CrossRef]
  4. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, Nanotechnology 18, 485302 (2007).
  5. A. Kapitonov and V. Astratov, Opt. Lett. 32, 409 (2007). [CrossRef]
  6. S. Yang and V. N. Astratov, Appl. Phys. Lett. 92, 261111 (2008). [CrossRef]
  7. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, J. Comput. Theor. Nanosci. 6, 1979 (2009). [CrossRef]
  8. E. F. Schubert, J. K. Kim, and J. Q. Xi, Phys. Status Solidi B 244, 3002 (2007).
  9. S. C. Kong, A. Taflove, and V. Backman, Opt. Express 17, 3722 (2009). [CrossRef]
  10. L. W. Hrubesh and J. F. Poco, “Method of producing optical quality glass having a selected refractive index,” U.S. patent6,158,244 (12December2000).
  11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  12. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Professional, 2009).
  13. Schott optical glass data sheet–catalog, http://refractiveindex.info/download/data/2012/schott_optical_glass_collection_datasheets_dec_2012_us.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited