OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 14 — Jul. 15, 2014
  • pp: 4148–4151

Reweighted L1 regularization for restraining artifacts in FMT reconstruction images with limited measurements

Wenhao Xie, Yong Deng, Kan Wang, Xiaoquan Yang, and Qingming Luo  »View Author Affiliations

Optics Letters, Vol. 39, Issue 14, pp. 4148-4151 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In fluorescence molecular tomography (FMT), many artifacts exist in the reconstructed images because of the inherently ill-posed nature of the FMT inverse problem, especially with limited measurements. A new method based on iterative reweighted L1 (IRL1) regularization is proposed for reducing artifacts with limited measurements. Phantom experiments demonstrate that the reconstructed images have fewer artifacts even with very limited measurements. This indicates that FMT based on IRL1 can obtain high-quality images and thus has the potential to observe dynamic changes in fluorescence-targeted molecules.

© 2014 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 21, 2014
Manuscript Accepted: June 10, 2014
Published: July 9, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Wenhao Xie, Yong Deng, Kan Wang, Xiaoquan Yang, and Qingming Luo, "Reweighted L1 regularization for restraining artifacts in FMT reconstruction images with limited measurements," Opt. Lett. 39, 4148-4151 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, Nat. Methods 7, 603 (2010). [CrossRef]
  2. A. Jin, B. Yazici, A. Ale, and V. Ntziachristos, Opt. Lett. 37, 4326 (2012). [CrossRef]
  3. J. Dutta, S. Ahn, C. Li, S. R. Cherry, and R. M. Leahy, Phys. Med. Biol. 57, 1459 (2012). [CrossRef]
  4. J. C. Baritaux, K. Hassler, and M. Unser, IEEE Trans. Med. Imaging 29, 1075 (2010). [CrossRef]
  5. M. Chang, L. Li, Z. Chen, Y. Xiao, L. Zhang, and G. Wang, J. X-Ray Sci. Technol. 21, 161 (2013).
  6. D. Han, J. Tian, K. Liu, J. Feng, B. Zhang, X. Ma, and C. Qin, IEEE Trans. Biomed. Eng. 57, 2564 (2010). [CrossRef]
  7. E. J. Candes, M. B. Wakin, and S. P. Boyd, J. Fourier Anal. Appl. 14, 877 (2008).
  8. D. Wipf and S. Nagarajan, IEEE J. Sel. Top. Signal Process. 4, 317 (2010). [CrossRef]
  9. D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang, Opt. Express 18, 8630 (2010). [CrossRef]
  10. J. Shi, B. Zhang, F. Liu, J. Luo, and J. Bai, Opt. Lett. 38, 3696 (2013). [CrossRef]
  11. J. F. P. J. Abascal, J. Chamorro-Servent, J. Aguirre, S. Arridge, T. Correia, J. Ripoll, J. J. Vaquero, and M. Desco, Med. Phys. 38, 6275 (2011). [CrossRef]
  12. L. Zhao, H. Yang, W. Cong, G. Wang, and X. Intes, Proc. SPIE 8937, 89370V (2014). [CrossRef]
  13. D. Zhu and C. Li, Phys. Med. Biol 59, 2901 (2014). [CrossRef]
  14. A. Soubret, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 24, 1377 (2005). [CrossRef]
  15. X. Yang, G. Hui, G. Quan, Y. Deng, and Q. Luo, Rev. Sci. Instrum. 81, 054304 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited