OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 14 — Jul. 15, 2014
  • pp: 4192–4195

Generalized description of spectral incoherent solitons

Gang Xu, Josselin Garnier, Matteo Conforti, and Antonio Picozzi  »View Author Affiliations

Optics Letters, Vol. 39, Issue 14, pp. 4192-4195 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectral incoherent solitons (SIS) refer to an incoherent solitonic structure that only can be identified in the frequency domain and which is sustained by noninstantaneous Raman-like nonlinearities. We provide a generalized formulation of SIS by considering the generalized nonlinear Schrödinger equation. We show that nonlinear dispersive effects (e.g., self-steepening) dramatically affect the structure of SIS, in particular by significantly decelerating their spectral velocity in frequency space. The wave turbulence description of the problem reveals an underlying self-organization process: the soliton trajectory in frequency space is selected in such a way that it allows the system to self-organize into a stationary SIS state.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

Original Manuscript: May 16, 2014
Manuscript Accepted: June 7, 2014
Published: July 10, 2014

Gang Xu, Josselin Garnier, Matteo Conforti, and Antonio Picozzi, "Generalized description of spectral incoherent solitons," Opt. Lett. 39, 4192-4195 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. Christodoulides, “Optical wave turbulence: toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep., http://dx.doi.org/10.1016/j.physrep.2014.03.002 (to be published).
  2. T. Hansson, D. Anderson, M. Lisak, V. E. Semenov, and U. Österberg, J. Opt. Soc. Am. B 25, 1780 (2008). [CrossRef]
  3. A. Piskarskas, V. Pyragaite, and A. Stabinis, Phys. Rev. A 82, 053817 (2010). [CrossRef]
  4. J. Laurie, U. Bortolozzo, S. Nazarenko, and S. Residori, Phys. Rep. 514, 121 (2012). [CrossRef]
  5. Y. Silberberg, Y. Lahini, Y. Bromberg, E. Small, and R. Morandotti, Phys. Rev. Lett. 102, 233904 (2009). [CrossRef]
  6. P. Aschieri, J. Garnier, C. Michel, V. Doya, and A. Picozzi, Phys. Rev. A 83, 033838 (2011). [CrossRef]
  7. C. Conti, M. Leonetti, A. Fratalocchi, L. Angelani, and G. Ruocco, Phys. Rev. Lett. 101, 143901 (2008). [CrossRef]
  8. S. Babin, D. Churkin, A. Ismagulov, S. Kablukov, and E. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007). [CrossRef]
  9. E. Turitsyna, S. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. Babin, E. Podivilov, D. Churkin, G. Falkovich, and S. Turitsyn, Nat. Photonics 7, 783 (2013). [CrossRef]
  10. R. Weill, B. Fischer, and O. Gat, Phys. Rev. Lett. 104, 173901 (2010). [CrossRef]
  11. A. Schwache and F. Mitschke, Phys. Rev. E 55, 7720 (1997). [CrossRef]
  12. B. Barviau, B. Kibler, and A. Picozzi, Phys. Rev. A 79, 063840 (2009). [CrossRef]
  13. B. Barviau, J. Garnier, G. Xu, B. Kibler, G. Millot, and A. Picozzi, Phys. Rev. A 87, 035803 (2013). [CrossRef]
  14. M. Erkintalo, M. Surakka, J. Turunen, A. T. Friberg, and G. Genty, Opt. Lett. 37, 169 (2012). [CrossRef]
  15. J. Garnier, G. Xu, S. Trillo, and A. Picozzi, Phys. Rev. Lett. 111, 113902 (2013). [CrossRef]
  16. S. Derevyanko and E. Small, Phys. Rev. A 85, 053816 (2012). [CrossRef]
  17. P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, Phys. Rev. Lett. 104, 054101 (2010). [CrossRef]
  18. M. Mitchell, Z. Chen, M. Shih, and M. Segev, Phys. Rev. Lett. 77, 490 (1996). [CrossRef]
  19. M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, Phys. Rev. Lett. 84, 467 (2000). [CrossRef]
  20. B. Kibler, C. Michel, J. Garnier, and A. Picozzi, Opt. Lett. 37, 2472 (2012). [CrossRef]
  21. C. Rotschild, T. Schwartz, O. Cohen, and M. Segev, Nat. Photonics 2, 371 (2008). [CrossRef]
  22. A. Picozzi and J. Garnier, Phys. Rev. Lett. 107, 233901 (2011). [CrossRef]
  23. C. Michel, B. Kibler, J. Garnier, and A. Picozzi, Phys. Rev. A 86, 041801(R) (2012). [CrossRef]
  24. J. Garnier and A. Picozzi, Phys. Rev. A 81, 033831 (2010). [CrossRef]
  25. C. Michel, B. Kibler, and A. Picozzi, Phys. Rev. A 83, 023806 (2011). [CrossRef]
  26. B. Kibler, C. Michel, A. Kudlinski, B. Barviau, G. Millot, and A. Picozzi, Phys. Rev. E 84, 066605 (2011). [CrossRef]
  27. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012).
  28. K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989). [CrossRef]
  29. J. Travers, M. Frosz, and J. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), p. 32.
  30. J. Laegsgaard, Opt. Express 15, 16110 (2007). [CrossRef]
  31. A. Picozzi, S. Pitois, and G. Millot, Phys. Rev. Lett. 101, 093901 (2008). [CrossRef]
  32. A. A. Voronin, A. M. Zheltikov, and M. Aleksei, Opt. Lett. 33, 1723 (2008). [CrossRef]
  33. M. Conforti, A. Marini, T. X. Tran, D. Faccio, and F. Biancalana, Opt. Express 21, 31239 (2013). [CrossRef]
  34. S. L. Musher, A. M. Rubenchik, and V. E. Zakharov, Phys. Rep. 252, 177 (1995). [CrossRef]
  35. C. Montes, Phys. Rev. A 20, 1081 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited