OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 14 — Jul. 15, 2014
  • pp: 4215–4218

Stable localized modes in asymmetric waveguides with gain and loss

Eduard N. Tsoy, Izzat M. Allayarov, and Fatkhulla Kh. Abdullaev  »View Author Affiliations

Optics Letters, Vol. 39, Issue 14, pp. 4215-4218 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is shown that asymmetric waveguides with gain and loss can support a stable propagation of optical beams. This means that the propagation constants of modes of the corresponding complex optical potential are real. A class of such waveguides is found from a relation between two spectral problems. A particular example of an asymmetric waveguide, described by the hyperbolic functions, is analyzed. The existence and stability of linear modes and of continuous families of nonlinear modes are demonstrated.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Optical Devices

Original Manuscript: March 24, 2014
Revised Manuscript: June 9, 2014
Manuscript Accepted: June 9, 2014
Published: July 11, 2014

Eduard N. Tsoy, Izzat M. Allayarov, and Fatkhulla Kh. Abdullaev, "Stable localized modes in asymmetric waveguides with gain and loss," Opt. Lett. 39, 4215-4218 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008). [CrossRef]
  2. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009). [CrossRef]
  3. C. M. Bender, Rep. Prog. Phys. 70, 947 (2007). [CrossRef]
  4. M. Wadati, J. Phys. Soc. Jpn. 77, 074005 (2008). [CrossRef]
  5. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010). [CrossRef]
  6. F. Kh. Abdullaev, Y. V. Kartashov, V. V. Konotop, and D. A. Zezyulin, Phys. Rev. A 83, 041805(R) (2011). [CrossRef]
  7. E. N. Tsoy, S. Sh. Tadjimuratov, and F. Kh. Abdullaev, Opt. Commun. 285, 3441 (2012). [CrossRef]
  8. Z. Lin, J. Schindler, F. M. Ellis, and T. Kottos, Phys. Rev. A 85, 050101(R) (2012). [CrossRef]
  9. M.-A. Miri, M. Heinrich, and D. N. Christodoulides, Phys. Rev. A 87, 043819 (2013). [CrossRef]
  10. J. Yang, Phys. Lett. A 378, 367 (2014). [CrossRef]
  11. F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995). [CrossRef]
  12. A. A. Andrianov, M. V. Ioffe, F. Cannata, and J. P. Dedonder, Int. J. Mod. Phys. A 14, 2675 (1999). [CrossRef]
  13. G. Lévai and M. Znojil, J. Phys. A 35, 8793 (2002). [CrossRef]
  14. Yu. S. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  15. S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Springer-Verlag, 1984).
  16. G. L. Lamb, Elements of Soliton Theory (Wiley, 1980).
  17. S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 1392 (1973) [Sov. Phys. JETP 38, 693 (1974)].
  18. J. Satsuma and N. Yajima, Suppl. Prog. Theor. Phys. 55, 284 (1974). [CrossRef]
  19. Z. Ahmed, Phys. Lett. A 282, 343 (2001). [CrossRef]
  20. M. Klaus and J. K. Shaw, Phys. Rev. E 65, 036607 (2002). [CrossRef]
  21. E. N. Tsoy and F. Kh. Abdullaev, Phys. Rev. E 67, 056610 (2003). [CrossRef]
  22. T. Pang, An Introduction to Computational Physics (Cambridge University, 2006).
  23. N. Akhmediev and A. Ankiewicz, eds., Lecture Notes in Physics: Dissipative Solitons (Springer, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited