OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 14 — Jul. 15, 2014
  • pp: 4259–4262

Flexible picosecond thulium-doped fiber laser using the active mode-locking technique

Ke Yin, Bin Zhang, Weiqiang Yang, He Chen, Shengping Chen, and Jing Hou  »View Author Affiliations


Optics Letters, Vol. 39, Issue 14, pp. 4259-4262 (2014)
http://dx.doi.org/10.1364/OL.39.004259


View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An all-fiber actively mode-locked thulium-doped fiber laser (AML-TDFL) based on a 10 GHz bandwidth electro-optic intensity modulator (EOM) providing flexible picosecond pulses at 1980 nm is presented. The EOM is driven by electrical pulses rather than traditional sine-wave signals. The repetition rate of output pulses was 21.4 MHz at fundamental mode-locking, which could be scaled up to 1.498 GHz through the 70th order harmonic mode-locking, and the shortest measured output pulse width was 38 ps. Furthermore, the output pulse width could be tuned by either adjusting the modulation frequency with small detuning or changing the width of these driving electrical pulses without frequency detuning. In our work, the stability of these mode-locked pulses obtained from the AML-TDFL was superior; for instance, the measured supermode suppression ratio of 1.498 GHz pulses train was up to 48 dB.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 6, 2014
Revised Manuscript: June 7, 2014
Manuscript Accepted: June 9, 2014
Published: July 15, 2014

Citation
Ke Yin, Bin Zhang, Weiqiang Yang, He Chen, Shengping Chen, and Jing Hou, "Flexible picosecond thulium-doped fiber laser using the active mode-locking technique," Opt. Lett. 39, 4259-4262 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-14-4259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. V. Grattan, Appl. Opt. 51, 7011 (2012). [CrossRef]
  2. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, Opt. Laser Technol. 44, 2095 (2012). [CrossRef]
  3. N. M. Fried and K. E. Murray, J. Endourol. 19, 25 (2005). [CrossRef]
  4. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, Opt. Lett. 39, 1849 (2014). [CrossRef]
  5. L. M. Yang, P. Wan, V. Protopopov, and J. Liu, Opt. Express 20, 5683 (2012). [CrossRef]
  6. M. Zhang, E. Kelleher, T. Runcorn, V. Mashinsky, O. Medvedkov, E. Dianov, D. Popa, S. Milana, T. Hasan, and Z. Sun, Opt. Express 21, 23261 (2013). [CrossRef]
  7. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, Opt. Lett. 37, 2085 (2012). [CrossRef]
  8. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, Opt. Express 22, 7865 (2014). [CrossRef]
  9. J. Liu, Q. Wang, and P. Wang, Opt. Express 20, 22442 (2012). [CrossRef]
  10. J. Sotor, G. Sobon, K. Krzempek, and K. M. Abramski, Opt. Commun. 285, 3174 (2012). [CrossRef]
  11. A. Heidt, Z. Li, J. Sahu, P. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, and S. Alam, Opt. Lett. 38, 1615 (2013). [CrossRef]
  12. A. Heidt, Z. Li, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 3100612 (2014).
  13. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010). [CrossRef]
  14. D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970). [CrossRef]
  15. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000). [CrossRef]
  16. L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC Press, 2010).
  17. P. Hübner, C. Kieleck, S. D. Jackson, and M. Eichhorn, Opt. Lett. 36, 2483 (2011). [CrossRef]
  18. X. Wang, P. Zhou, R. Tao, and L. Si, IEEE Photon. J. 5, 1502206 (2013). [CrossRef]
  19. J. Schlager, Y. Yamabayashi, D. Franzen, and R. Juneau, IEEE Photon. Technol. Lett. 1, 264 (1989). [CrossRef]
  20. M. Malmström, W. Margulis, O. Tarasenko, V. Pasiskevicius, and F. Laurell, Opt. Express 20, 2905 (2012). [CrossRef]
  21. W. Li, Z. Yin, J. Qiu, J. Wu, and J. Lin, IEEE Photon. Technol. Lett. 25, 2247 (2013). [CrossRef]
  22. Y. Li, C. Lou, M. Han, and Y. Gao, Opt. Quantum Electron. 33, 589 (2001). [CrossRef]
  23. Y. M. Chang, J. Lee, Y. M. Jhon, and J. H. Lee, Appl. Opt. 51, 5295 (2012). [CrossRef]
  24. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, Opt. Express 22, 5387 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited