OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 14 — Jul. 15, 2014
  • pp: 4263–4266

Holographic patterning of graphene-oxide films by light-driven reduction

E. Orabona, A. Ambrosio, A. Longo, G. Carotenuto, L. Nicolais, and P. Maddalena  »View Author Affiliations

Optics Letters, Vol. 39, Issue 14, pp. 4263-4266 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the patterning and reduction of graphene-oxide films by holographic lithography. Light reduction can be used to engineer low-cost graphene-based devices by performing a local conversion of insulating oxide into the conductive graphene. In this work, computer-generated holograms have been exploited to realize complex graphene patterns in a single shot, different from serial laser writing or mask-based photolithographic processes. The technique has been further improved by achieving speckle noise reduction: submicron and diffraction-limited features have been obtained. In addition we have also demonstrated that the gray-scale lithography capability can be used to obtain different reduction levels in a single exposure.

© 2014 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(260.5130) Physical optics : Photochemistry
(310.3840) Thin films : Materials and process characterization
(110.4235) Imaging systems : Nanolithography

ToC Category:

Original Manuscript: May 14, 2014
Revised Manuscript: June 10, 2014
Manuscript Accepted: June 10, 2014
Published: July 15, 2014

E. Orabona, A. Ambrosio, A. Longo, G. Carotenuto, L. Nicolais, and P. Maddalena, "Holographic patterning of graphene-oxide films by light-driven reduction," Opt. Lett. 39, 4263-4266 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). [CrossRef]
  2. G. Eda and M. Chhowalla, Adv. Mater. 22, 2392 (2010). [CrossRef]
  3. L. Chen, Y. Tang, K. Wang, C. Liu, and S. Luo, Electrochem. Comm. 13, 133 (2011). [CrossRef]
  4. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007). [CrossRef]
  5. C. D. Zangmeister, Chem. Mater. 22, 5625 (2010). [CrossRef]
  6. L. J. Cote, R. Cruz-Silva, and J. Huang, J. Am. Chem. Soc. 131, 11027 (2009). [CrossRef]
  7. Y.-L. Zhang, L. Guo, H. Xia, Q.-D. Chen, J. Feng, and H.-B. Sun, Adv. Opt. Mater. 2, 10 (2014). [CrossRef]
  8. D. A. Sokolov, K. R. Shepperd, and T. M. Orlando, J. Phys. Chem. Lett. 1, 2633 (2010). [CrossRef]
  9. Y. Zhou, Q. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C.-H. Sow, and K. P. Loh, Adv. Mater. 22, 67 (2010). [CrossRef]
  10. Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, Nano Today 5, 15 (2010). [CrossRef]
  11. C. Petridis, Y.-H. Lin, K. Savva, G. Eda, E. Kymakis, T. D. Anthopoulos, and E. Stratakis, Appl. Phys. Lett. 102, 093115 (2013). [CrossRef]
  12. W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, and P. M. Ajayan, Nat. Nanotechnol. 6, 496 (2011). [CrossRef]
  13. M. F. El-Kady and R. B. Kaner, Nat. Commun. 4, 1475 (2013). [CrossRef]
  14. L. Guo, H.-B. Jiang, R.-Q. Shao, Y.-L. Zhang, S.-Y. Xie, J.-N. Wang, X.-B. Li, F. Jiang, Q.-D. Chen, T. Zhang, and H.-B. Sun, Carbon 50, 1667 (2012). [CrossRef]
  15. V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, and M. S. El-Shall, J. Phys. Chem. Lett. 1, 2804 (2010). [CrossRef]
  16. Y. Tao, B. Varghese, M. Jaiswal, S. Wang, Z. Zhang, B. Oezyilmaz, K. P. Loh, E. S. Tok, and C. H. Sow, Appl. Phys. A 106, 523 (2012). [CrossRef]
  17. V. Strong, S. Dubin, M. F. El-Kady, A. Lech, Y. Wang, B. H. Weiller, and R. B. Kaner, ACS Nano 6, 1395 (2012). [CrossRef]
  18. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, Opt. Express 18, 11754 (2010). [CrossRef]
  19. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, Opt. Express 16, 5164 (2008). [CrossRef]
  20. G. Carotenuto, V. Romeo, S. D. Nicola, and L. Nicolais, Nanoscale Res. Lett. 8, 1 (2013). [CrossRef]
  21. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010). [CrossRef]
  22. C. Hu, X. Zhai, L. Liu, Y. Zhao, L. Jiang, and L. Qu, Sci. Rep. 3, 2065 (2013).
  23. R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).
  24. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, Nat. Commun. 3, 989 (2012). [CrossRef]
  25. J. Amako, H. Miura, and T. Sonehara, Appl. Opt. 34, 3165 (1995). [CrossRef]
  26. J. W. Goodman, J. Opt. Soc. Am. 66, 1145 (1976). [CrossRef]
  27. M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, Opt. Express 21, 5379 (2013). [CrossRef]
  28. F. Perrozzi, S. Prezioso, M. Donarelli, F. Bisti, P. De Mrco, S. Santucci, M. Nardone, E. Treossi, V. Palermo, and L. Ottaviano, J. Phys. Chem. C 117, 620 (2013). [CrossRef]
  29. X. Li, Q. Zhang, X. Chen, and M. Gu, Sci. Rep. 3, 2819 (2013).
  30. Y. Montelongo, B. Chen, H. Butt, J. Robertson, and T. D. Wilkinson, Appl. Phys. Lett. 103, 111104 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited