OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4396–4399

Rigorous calculation of the nonlinear Kerr coefficient for a waveguide using power-dependent dispersion modification

A. V. Maslov  »View Author Affiliations


Optics Letters, Vol. 39, Issue 15, pp. 4396-4399 (2014)
http://dx.doi.org/10.1364/OL.39.004396


View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is proposed that the direct calculation of the dispersion for a waveguide using the effective power-dependent permittivity is a rigorous way to determine its nonlinear Kerr coefficient. The tensor permittivity accounts fully for the vectorial nature of the electric field. The calculated Kerr coefficients for the lowest transverse-magnetic modes of a nonlinear slab and wire are compared with the results of several formulas existing in the literature. The proposed approach can conveniently be implemented using standard mode solvers.

© 2014 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 31, 2014
Revised Manuscript: June 4, 2014
Manuscript Accepted: June 19, 2014
Published: July 23, 2014

Citation
A. V. Maslov, "Rigorous calculation of the nonlinear Kerr coefficient for a waveguide using power-dependent dispersion modification," Opt. Lett. 39, 4396-4399 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-15-4396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, Opt. Express 16, 1300 (2008). [CrossRef]
  2. M. A. Foster, K. D. Moll, and A. L. Gaeta, Opt. Express 12, 2880 (2004). [CrossRef]
  3. A. Zheltikov, J. Opt. Soc. Am. B 22, 1100 (2005). [CrossRef]
  4. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, Opt. Express 15, 5976 (2007). [CrossRef]
  5. N. C. Panoiu, J. F. McMillan, and C. W. Wong, IEEE J. Sel. Top. Quantum Electron. 16, 257 (2010). [CrossRef]
  6. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, IEEE J. Sel. Top. Quantum Electron. 16, 344 (2010). [CrossRef]
  7. R. W. Boyd, Nonlinear Optics, 3rd. ed. (Academic, 2008).
  8. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013), Sect. 2.3.1, pp. 34–39.
  9. S. Afshar V. and T. M. Monro, Opt. Express 17, 2298 (2009). [CrossRef]
  10. S. V. Afshar, T. M. Monro, and C. M. de Sterke, Opt. Express 21, 18558 (2013). [CrossRef]
  11. S. V. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, Opt. Lett. 34, 3577 (2009). [CrossRef]
  12. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, Adv. Opt. Photon. 1, 162 (2009). [CrossRef]
  13. T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, IEEE J. Quantum Electron. 33, 1763 (1997). [CrossRef]
  14. Y. Z. Huang, IEE Proc. Optoelectron. 148, 131 (2001). [CrossRef]
  15. A. V. Maslov and C. Z. Ning, IEEE J. Quantum Electron. 40, 1389 (2004). [CrossRef]
  16. A. V. Maslov and C. Z. Ning, in Nitride Semiconductor Devices: Principles and Simulation, J. Piprek, ed. (Wiley-VCH Verlag, 2007), Chap. 21, pp. 467–491.
  17. A. V. Maslov and M. Miyawaki, J. Appl. Phys. 108, 083105 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited