OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4400–4403

Polarization-beam-splitter-less integrated dual-polarization coherent receiver

C. Alonso-Ramos, P. J. Reyes-Iglesias, A. Ortega-Moñux, D. Pérez-Galacho, R. Halir, and I. Molina-Fernández  »View Author Affiliations

Optics Letters, Vol. 39, Issue 15, pp. 4400-4403 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Conventional dual-polarization coherent receivers require polarization beam splitters for either the signal or the local oscillator path. This severely hinders monolithic integration, since integrated polarization splitting devices often exhibit stringent fabrication tolerances. Here we propose a dual-polarization monolithically integrated coherent receiver architecture that completely avoids the use of polarization splitting elements. Polarization management is instead achieved by adequately engineering the birefringence of the interconnecting waveguides. The resultant receiver is highly tolerant to fabrication deviations and thus offers a completely new route for monolithic integration of dual-polarization receivers without any type of active tuning.

© 2014 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 10, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: June 18, 2014
Published: July 23, 2014

C. Alonso-Ramos, P. J. Reyes-Iglesias, A. Ortega-Moñux, D. Pérez-Galacho, R. Halir, and I. Molina-Fernández, "Polarization-beam-splitter-less integrated dual-polarization coherent receiver," Opt. Lett. 39, 4400-4403 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, Opt. Express 16, 753 (2008). [CrossRef]
  2. Mirthe Project, http://www.ist-mirthe.eu/ .
  3. R. Kunkel, H.-G. Bach, R. Zhang, D. Hoffmann, D. Schmidt, M. Schell, A. Ortega-Moñux, S. Romero-García, I. Molina-Fernández, and R. Halir, in Compound Semiconductor Week and 23rd International Conference on Indium Phosphide and Related Materials (IEEE, 2011), pp. 1–4.
  4. Optical Internetworking Forum (OIF), http://www.oiforum.com .
  5. D. Dai, Z. Wang, and E. J. Bowers, J. Lightwave Technol. 29, 1808 (2011). [CrossRef]
  6. D. Pérez-Galacho, R. Halir, A. Ortega-Moñux, C. Alonso-Ramos, R. Zhang, P. Runge, K. Janiak, H.-G. Bach, A. G. Steffan, and I. Molina-Fernández, Opt. Express 21, 14146 (2013). [CrossRef]
  7. C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T.-C. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, IEEE Photon. Technol. Lett. 23, 694 (2011). [CrossRef]
  8. D. Pérez-Galacho, R. Zhang, A. Ortega-Moñux, R. Halir, C. Alonso-Ramos, P. Runge, K. Janiak, G. Zhou, H.-G. Bach, A. G. Steffan, and I. Molina-Fernández, J. Lightwave Technol. 32, 361 (2014). [CrossRef]
  9. K. Kikuchi, Opt. Express 22, 1971 (2014). [CrossRef]
  10. S. J. Savory, Opt. Express 16, 804 (2008). [CrossRef]
  11. P. J. Reyes-Iglesias, A. Ortega-Moñux, and I. Molina-Fernández, Opt. Express 21, 23018 (2012).
  12. I. Fatadin, S. J. Savory, and D. Ives, IEEE Photon. Technol. Lett. 20, 1733 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited