OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4408–4411

Injection locking for stable all-optical pulse generation via gain-induced FWM

Fangxin Li and Amr S. Helmy  »View Author Affiliations


Optics Letters, Vol. 39, Issue 15, pp. 4408-4411 (2014)
http://dx.doi.org/10.1364/OL.39.004408


View Full Text Article

Enhanced HTML    Acrobat PDF (696 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a technique to stabilize pulse generation based on gain-induced four wave mixing (FWM) via injection locking with no feedback. Robust and low-phase noise pulse generation was achieved. Pulse-train generation from 230 MHz to 76GHz with a linewidth of 1Hz is experimentally demonstrated. The injection locking effectively narrows the linewidth of the generated pulse by four orders of magnitude. The fiber ring cavity reduces the sideband phase noise by 100 times and suppresses the residual injection signal by three orders of magnitude.

© 2014 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(320.5550) Ultrafast optics : Pulses

ToC Category:
Ultrafast Optics

History
Original Manuscript: May 8, 2014
Manuscript Accepted: June 10, 2014
Published: July 23, 2014

Citation
Fangxin Li and Amr S. Helmy, "Injection locking for stable all-optical pulse generation via gain-induced FWM," Opt. Lett. 39, 4408-4411 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-15-4408


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Copmany and D. Novak, Nat. Photonics 1, 319 (2007). [CrossRef]
  2. U. Keller, Nature 424, 831 (2003). [CrossRef]
  3. C. Wu and N. K. Dutta, IEEE J. Quantum Electron. 36, 145 (2000). [CrossRef]
  4. L. Duan, C. J. K. Richardson, Z. Hu, M. Dagenais, and J. Goldhar, IEEE Photon. Technol. Lett. 14, 840 (2002). [CrossRef]
  5. L. A. Johansson and A. J. Seeds, J. Lightwave Technol. 21, 511 (2003). [CrossRef]
  6. D. S. Wu, R. Slavik, G. Marra, and D. J. Richardson, J. Lightwave Technol. 31, 2287 (2013). [CrossRef]
  7. X. Fang, P. Wai, H. Y. Tam, X. Dong, and C. Lu, Opt. Eng. 49, 74201 (2010). [CrossRef]
  8. J. Zhuang and S. Chan, Opt. Lett. 38, 344 (2013). [CrossRef]
  9. F. Li and A. S. Helmy, Opt. Lett. 38, 1241 (2013). [CrossRef]
  10. S. Jiang, D. E. Leaird, and A. M. Weiner, IEEE J. Quantum Electron. 42, 657 (2006). [CrossRef]
  11. F. Li and A. S. Helmy, Opt. Lett. 38, 4542 (2013). [CrossRef]
  12. X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microw. Theory Tech. 54, 804 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited