OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4435–4438

Spin and orbital angular momentum and their conversion in cylindrical vector vortices

Jiangbo Zhu, Yujie Chen, Yanfeng Zhang, Xinlun Cai, and Siyuan Yu  »View Author Affiliations

Optics Letters, Vol. 39, Issue 15, pp. 4435-4438 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The generation of light beams carrying orbital angular momentum (OAM) has been greatly advanced with the emergence of the recently reported integrated optical vortex emitters. Generally, optical vortices emitted by these devices possess cylindrically symmetric states of polarization and spiral phase fronts, and they can be defined as cylindrical vector vortices (CVVs). Using the radiation of angularly arranged dipoles to model the CVVs, these beams as hybrid modes of two circularly polarized scalar vortices are theoretically demonstrated to own well-defined total angular momentum. Moreover, the effect of spin–orbit interactions of angular momentum is identified in the CVVs when the size of the emitting structure varies. This effect results in the diminishing spin component of angular momentum and purer OAM states at large structure radii.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.5430) Physical optics : Polarization
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: April 21, 2014
Revised Manuscript: June 18, 2014
Manuscript Accepted: June 18, 2014
Published: July 23, 2014

Jiangbo Zhu, Yujie Chen, Yanfeng Zhang, Xinlun Cai, and Siyuan Yu, "Spin and orbital angular momentum and their conversion in cylindrical vector vortices," Opt. Lett. 39, 4435-4438 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012). [CrossRef]
  2. N. K. Fontaine, C. R. Doerr, and L. Buhl, “Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical DigestLos Angeles, California, March4–8, 2012 (Optical Society of America, 2012), paper OTu1l.2.
  3. Z. Zhao, J. Wang, S. Li, and A. E. Willner, Opt. Lett. 38, 932 (2013). [CrossRef]
  4. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A 45, 8185 (1992). [CrossRef]
  5. J. Zhu, X. Cai, Y. Chen, and S. Yu, Opt. Lett. 38, 1343 (2013). [CrossRef]
  6. W. Nasalski, Opt. Lett. 38, 809 (2013). [CrossRef]
  7. W. Nasalski, Appl. Phys. B 115, 155 (2014). [CrossRef]
  8. V. N. Belyi, N. A. Khilo, S. N. Kurilkina, and N. S. Kazak, J. Opt. 15, 044018 (2013). [CrossRef]
  9. M. V. Berry, Proc. SPIE 3487, 6 (1998). [CrossRef]
  10. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic, 2006).
  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1965).
  12. S. M. Barnett and L. Allen, Opt. Commun. 110, 670 (1994). [CrossRef]
  13. S. van Enk and G. Nienhuis, Europhys. Lett. 25, 497 (1994). [CrossRef]
  14. S. M. Barnett, J. Mod. Opt. 57, 1339 (2010). [CrossRef]
  15. S. M. Barnett, J. Opt. B 4, S7 (2002). [CrossRef]
  16. J. H. Crichton and P. L. Marston, Electron. J. Diff. Eqns. Conf. 04, 37 (2000).
  17. S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247 (1956).
  18. Z. Bomzon, G. Biener, V. Kliener, and E. Hasman, Opt. Lett. 27, 285 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited