OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4466–4469

Self-phase modulation compensation in a regenerative amplifier using cascaded second-order nonlinearities

C. Dorrer, R. G. Roides, J. Bromage, and J. D. Zuegel  »View Author Affiliations

Optics Letters, Vol. 39, Issue 15, pp. 4466-4469 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Self-phase modulation limits the amplification of short optical pulses because of spatial self-focusing and spectral broadening. Cascaded nonlinearities are theoretically and experimentally investigated for intracavity nonlinearity compensation in a neodymium-doped yttrium-lithium-fluoride (Nd:YLF) regenerative amplifier. Experimental results are in good agreement with simulations. Spectral broadening is significantly reduced, allowing for efficient amplification in a Nd:YLF power amplifier.

© 2014 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3410) Lasers and laser optics : Laser resonators
(140.3530) Lasers and laser optics : Lasers, neodymium
(190.3270) Nonlinear optics : Kerr effect

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 4, 2014
Revised Manuscript: June 9, 2014
Manuscript Accepted: June 9, 2014
Published: July 24, 2014

C. Dorrer, R. G. Roides, J. Bromage, and J. D. Zuegel, "Self-phase modulation compensation in a regenerative amplifier using cascaded second-order nonlinearities," Opt. Lett. 39, 4466-4469 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, Appl. Phys. B 65, 423 (1997). [CrossRef]
  2. M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, and G. Hollemann, Appl. Phys. B 78, 287 (2004).
  3. M. Lührmann, C. Theobald, R. Wallenstein, and J. A. L’Huillier, Opt. Express 17, 22761 (2009).
  4. J. van Howe, G. Zhu, and C. Xu, Opt. Lett. 31, 1756 (2006). [CrossRef]
  5. O. A. Konoplev and D. D. Meyerhofer, IEEE J. Sel. Top. Quantum Electron. 4, 459 (1998). [CrossRef]
  6. R. H. Lehmberg, J. Reintjes, and R. C. Eckardt, Appl. Phys. Lett. 30, 487 (1977). [CrossRef]
  7. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, Opt. Lett. 17, 28 (1992). [CrossRef]
  8. G. I. Stegeman, Quantum Semiclassical Opt. 9, 139 (1997). [CrossRef]
  9. K. Beckwitt, F. W. Wise, L. Qian, A. L. Walker, and E. Canto-Said, Opt. Lett. 26, 1696 (2001). [CrossRef]
  10. F. Ö. Ilday and F. X. Kärtner, Opt. Lett. 31, 637 (2006). [CrossRef]
  11. A. G. White, J. Mlynek, and S. Schiller, Europhys. Lett. 35, 425 (1996). [CrossRef]
  12. M. Zavelani-Rossi, G. Cerullo, and V. Magni, IEEE J. Quantum Electron. 34, 61 (1998). [CrossRef]
  13. A. V. Okishev and J. D. Zuegel, Appl. Opt. 43, 6180 (2004). [CrossRef]
  14. C. Dorrer, I. A. Begishev, A. V. Okishev, and J. D. Zuegel, Opt. Lett. 32, 2143 (2007). [CrossRef]
  15. MATLAB R2011b, The MathWorks, Inc., http://www.mathworks.com .
  16. L. Yan, Y.-Q. Liu, and C. H. Lee, IEEE J. Quantum Electron. 30, 2194 (1994). [CrossRef]
  17. M. Bache, H. L. Guo, B. Zhou, and X. H. Zeng, Opt. Mater. Express 3, 357 (2013). [CrossRef]
  18. R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, and T. Usmanov, Opt. Commun. 229, 403 (2004). [CrossRef]
  19. F. W. Wise and J. Moses, Top. Appl. Phys. 114, 481 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited