OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4486–4489

Enhanced wavelength sensitivity of the self-collimation superprism effect in photonic crystals via slow light

Wei Li, Xiaogang Zhang, Xulin Lin, and Xunya Jiang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 15, pp. 4486-4489 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that the wavelength sensitivity of a self-collimation superprism in photonic crystals (PhCs) can be greatly improved via slow light. With the help of a saddle point Van Hove singularity, we present an approach to obtain such a wavelength-sensitive self-collimation superprism. Our superprism not only has extremely high wavelength sensitivity, but also can suppress beam divergence, irregular beam generation, and wavelength channel dropout, overcoming the limitations of traditional PhC-based superprisms. Based on our superprism, a high-performance compact demultiplexer is also proposed.

© 2014 Optical Society of America

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.5298) Diffraction and gratings : Photonic crystals
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: March 24, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: June 25, 2014
Published: July 25, 2014

Wei Li, Xiaogang Zhang, Xulin Lin, and Xunya Jiang, "Enhanced wavelength sensitivity of the self-collimation superprism effect in photonic crystals via slow light," Opt. Lett. 39, 4486-4489 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999). [CrossRef]
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998). [CrossRef]
  3. S. Foteinopoulou, Physica B 407, 4056 (2012). [CrossRef]
  4. B. Gralak, S. Enoch, and G. Tayeb, in Metamaterials: Physics and Engineering Explorations, N. Engheta and R. Ziolkowski, eds. (Wiley, 2006).
  5. J. Joannopoulos, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  6. H. Li, A. Wu, W. Li, X. Lin, C. Qiu, Z. Sheng, X. Wang, S. Zou, and F. Gan, IEEE Photon. J. 5, 201306 (2013).
  7. T. Matsumoto, S. Fujita, and T. Baba, Opt. Express 13, 10768 (2005). [CrossRef]
  8. B. Momeni and A. Adibi, Appl. Opt. 45, 8466 (2006). [CrossRef]
  9. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, Opt. Express 14, 2413 (2006). [CrossRef]
  10. T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002). [CrossRef]
  11. S. Foteinopoulou and C. M. Soukoulis, Phys. Rev. B 72, 165112 (2005). [CrossRef]
  12. D. Bernier, X. L. Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan, Opt. Express 16, 17209 (2008). [CrossRef]
  13. T. Baba and T. Matsumoto, Appl. Phys. Lett. 81, 2325 (2002). [CrossRef]
  14. M. Steel, R. Zoli, C. Grillet, R. McPhedran, C. Martijn de Sterke, A. Norton, P. Bassi, and B. Eggleton, Phys. Rev. E 71, 056608 (2005). [CrossRef]
  15. The relation between q and vg can be illustrated by Eq. (15) in Ref. [14], i.e., q=((kn/kx)(p/ω˜))+((1/|vg|2)((ω˜,χω˜,ηχ)−(ω˜,ηω˜,χχ)/(ω˜,χ))). Near the self-collimation region, we have p≃0, and the second term of the equation can be reduced by L’Hospital Rule. As a result, the equation becomes q≃(1/|vg|2)((−ω˜,ηω˜,χχχ)/(ω˜,χχ)). So we have q∝1/|vg|2.
  16. T. Baba, Nat. Photonics 2, 465 (2008). [CrossRef]
  17. M. Ibanescu, E. Reed, and J. Joannopoulos, Phys. Rev. Lett. 96, 033904 (2006). [CrossRef]
  18. X. Lin, X. Zhang, L. Chen, M. Soljačić, and X. Jiang, Opt. Express 21, 30140 (2013). [CrossRef]
  19. T. Matsumoto and T. Baba, J. Lightwave Technol. 22, 917 (2004). [CrossRef]
  20. EastFDTD V3.0, DONGJUN Information Technology Co., Ltd., China. See http://www.eastfdtd.com .
  21. W. Li, Z. Liu, X. Zhang, and X. Jiang, Appl. Phys. Lett. 100, 161108 (2012). [CrossRef]
  22. L. Wu, M. Mazilu, and T. Krauss, J. Lightwave Technol. 21, 561 (2003). [CrossRef]
  23. A. Bakhtazad and A. Kirk, J. Lightwave Technol. 25, 1322 (2007). [CrossRef]
  24. B. Momeni and A. Adibi, IEEE J. Sel. Areas Commun. 23, 1355 (2005). [CrossRef]
  25. B. Momeni and A. Adibi, Appl. Phys. B 77, 555 (2003). [CrossRef]
  26. The proportional coefficient, ζ∼(θT3/[(∇κ(θi),0)×(∇κ(θc),0)]z2), can be derived from the Eqs. (23) and (24) in Ref. [14], where all the symbols are the same as those in the Ref. [14].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited