OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4502–4505

Magneto-optical cooling of atoms

Mark G. Raizen, Dmitry Budker, Simon M. Rochester, Julia Narevicius, and Edvardas Narevicius  »View Author Affiliations


Optics Letters, Vol. 39, Issue 15, pp. 4502-4505 (2014)
http://dx.doi.org/10.1364/OL.39.004502


View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces, can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultracold atoms and phase-space density, with lower required laser power.

© 2014 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7010) Atomic and molecular physics : Laser trapping
(020.7490) Atomic and molecular physics : Zeeman effect
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: April 22, 2014
Manuscript Accepted: June 2, 2014
Published: July 28, 2014

Citation
Mark G. Raizen, Dmitry Budker, Simon M. Rochester, Julia Narevicius, and Edvardas Narevicius, "Magneto-optical cooling of atoms," Opt. Lett. 39, 4502-4505 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-15-4502


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Hänsch and A. L. Schawlow, Opt. Commun. 13, 68 (1975). [CrossRef]
  2. D. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975).
  3. H. Metcalf and P. van der Straten, Laser Cooling (Springer-Verlag, 1999).
  4. R. Compargue, ed., Atom and Molecular Beams: The State of the Art 2000 (Springer, 2001).
  5. M. G. Raizen, Science 324, 1403 (2009). [CrossRef]
  6. E. Lavert-Ofir, S. Gersten, A. B. Henson, I. Shani, L. David, J. Narevicius, and E. Narevicius, New J. Phys. 13, 103030 (2011). [CrossRef]
  7. E. Narevicius and M. G. Raizen, Chem. Rev. 112, 4879 (2012). [CrossRef]
  8. U. Even, M. Hillenkamp, and S. Keinan, J. Chem. Phys. 118, 8699 (2003). [CrossRef]
  9. R. I. Kaiser, A. G. Suits, and U. Even, Tel-Aviv University (private communication, 2013).
  10. R. I. Kaiser and A. G. Suits, Rev. Sci. Instrum. 66, 5405 (1995). [CrossRef]
  11. The exception is for metastable noble-gas atoms, created in a gas discharge, where the fraction is smaller, about 10−4.
  12. C. Cohen-Tannoudji and A. Kastler, Prog. Opt. 5, 1 (1966). [CrossRef]
  13. K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998). [CrossRef]
  14. V. S. Ivanov, Y. V. Rozhdestvensky, and K.-A. Suominen, Phys. Rev. A 85, 033422 (2012). [CrossRef]
  15. O. Stern, Z. Phys. 7, 249 (1921) [translation: Z. Phys. D: At. Mol. Clusters 10, 114 (1988)]. [CrossRef]
  16. Mention of the bias field is often omitted from the discussion of the Stern–Gerlach experiment, leading to the apparent “paradox” in the observation that state separation only occurs along one axis. See P. Alstrom, P. Hjorth, and R. Mattuck, Am. J. Phys. 50, 697 (1982). [CrossRef]
  17. M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992). [CrossRef]
  18. A. Kuhn, H. Perrin, W. Hänsel, and C. Salomon, “Three dimensional Raman cooling using velocity selective rapid adiabatic passage,” arXiv:1109.5237v2 (2011).
  19. D. Tupa, L. W. Anderson, D. L. Huber, and J. E. Lawler, Phys. Rev. A 33, 1045 (1986). [CrossRef]
  20. B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Phys. Rev. Lett. 101, 243002 (2008). [CrossRef]
  21. E. S. Shuman, J. F. Barry, and D. DeMille, Nature 467, 820 (2010). [CrossRef]
  22. M. A. Kasevich and S. Chu, Phys. Rev. Lett. 67, 181 (1991). [CrossRef]
  23. M. A. Kasevich, Science 298, 1363 (2002). [CrossRef]
  24. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005). [CrossRef]
  25. A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, Science 319, 1805 (2008). [CrossRef]
  26. R. Castillo-Garza, J. Gardner, S. Zisman, and M. G. Raizen, ACS Nano 7, 4378 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited