OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4506–4509

Extraordinary transmission through gain-assisted silicon-based nanohole arrays in telecommunication regimes

Mehdi Afshari Bavil, Qingzhong Deng, and Zhiping Zhou  »View Author Affiliations

Optics Letters, Vol. 39, Issue 15, pp. 4506-4509 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (404 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Extraordinary gain-assisted transmission in telecommunication regimes through circular nanohole arrays drilled on a metallic film is investigated theoretically. Silicon-compatible Er–Yb silicate, which has a photoluminescence peak in the telecommunication regime, was selected for optical amplification purposes. Geometrical parameters were optimized analytically in order to present transmission resonances at telecommunication regions. The required gain value for lossless propagation was determined by considering the surface-plasmon dispersion relation. Simulation results show that the predicted gain for lossless propagation cannot completely compensate the loss. By increasing gain value, absorption becomes zero and transmission approaches unit through a laser with a pumping power of 372 mW at 1480 nm.

© 2014 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: June 3, 2014
Revised Manuscript: June 21, 2014
Manuscript Accepted: June 22, 2014
Published: July 28, 2014

Mehdi Afshari Bavil, Qingzhong Deng, and Zhiping Zhou, "Extraordinary transmission through gain-assisted silicon-based nanohole arrays in telecommunication regimes," Opt. Lett. 39, 4506-4509 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, Nature 391, 667 (1998). [CrossRef]
  2. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007). [CrossRef]
  3. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, Appl. Phys. Lett. 100, 043105 (2012). [CrossRef]
  4. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010). [CrossRef]
  5. H. Gao, J. Henzie, and T. W. Odom, Nano Lett. 6, 2104 (2006). [CrossRef]
  6. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, A. Håkansson, A. Griol, J. Hurtado, J. A. Ayucar, L. Bellieres, P. J. Rodríguez, F. López-Royo, J. Martí, and A. Martínez, Appl. Phys. Lett. 106, 124313 (2009).
  7. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett. 8, 281 (2008). [CrossRef]
  8. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, Acc. Chem. Res. 41, 1049 (2008). [CrossRef]
  9. Y. Wang and Z. Zhou, Improved Si/Er Light Emitter by Using 2D Plasmonic Crystals (APOC, 2006).
  10. L. Guyot, A.-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, Opt. Express 19, 9962 (2011). [CrossRef]
  11. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, Opt. Express 15, 18119 (2007). [CrossRef]
  12. L. Martın-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001). [CrossRef]
  13. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Appl. Phys. Lett. 85, 4316 (2004). [CrossRef]
  14. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005). [CrossRef]
  15. R. F. Oulton, Nat. Photonics 6, 219 (2012). [CrossRef]
  16. J. Grandidier, G. C. Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, Nano Lett. 9, 2935 (2009). [CrossRef]
  17. P. Berini and I. Leon, Nat. Photonics 6, 16 (2011). [CrossRef]
  18. H. Zhang, H. Lu, H. P. Ho, Y. Zhou, X. Yu, and F. Luan, Appl. Phys. Lett. 100, 161904 (2012). [CrossRef]
  19. L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, Opt. Express 20, 11487 (2012). [CrossRef]
  20. R. Guo, X. Wang, K. Zang, B. Wang, L. Wang, L. Gao, and Z. Zhou, Appl. Phys. Lett. 99, 161115 (2011). [CrossRef]
  21. K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, Opt. Express 18, 7724 (2010). [CrossRef]
  22. R. Guo, B. Wang, X. Wang, L. Wang, L. Jiang, and Z. Zhou, Opt. Lett. 37, 1427 (2012). [CrossRef]
  23. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  24. X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, J. Appl. Phys. 108, 013506 (2010). [CrossRef]
  25. L. Wang, R. Guo, B. Wang, X. Wang, and Z. Zhou, IEEE Photon. Technol. Lett. 24, 900 (2012). [CrossRef]
  26. E. Laux, C. Genet, and T. W. Ebbesen, Opt. Express 17, 6920 (2009). [CrossRef]
  27. M. P. Nezhad, K. Tetz, and Y. Fainman, Opt. Express 12, 4072 (2004). [CrossRef]
  28. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, Opt. Express 16, 16659 (2008). [CrossRef]
  29. R. Marani, A. D. Orazio, V. Petruzzelli, S. G. Rodrigo, L. Martin-Moreno, F. J. García-Vidal, and J. Bravo-Abad, New J. Phys. 14, 013020 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited