OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4533–4536

Piconewton force measurement using a nanometric photonic crystal diaphragm

Wonuk Jo and Michel J. F. Digonnet  »View Author Affiliations

Optics Letters, Vol. 39, Issue 15, pp. 4533-4536 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (329 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact force fiber sensor capable of measuring forces at the piconewton level is reported. It consists of a miniature Fabry–Perot cavity fabricated at the tip a single-mode fiber, in which the external reflector is a compliant photonic-crystal diaphragm that deflects when subjected to a force. In the laboratory environment, this sensor was able to detect a force of only 4pN generated by the radiation pressure of a laser beam. Its measured minimum detectable force (MDF) at 3 kHz was as weak as 1.3pN/Hz. In a quiet environment, the measured noise was 16 times lower, and the MDF predicted to be 76fN/Hz.

© 2014 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: June 18, 2014
Manuscript Accepted: June 25, 2014
Published: July 29, 2014

Wonuk Jo and Michel J. F. Digonnet, "Piconewton force measurement using a nanometric photonic crystal diaphragm," Opt. Lett. 39, 4533-4536 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Binnig and C. F. Quate, Phys. Rev. Lett. 56, 930 (1986). [CrossRef]
  2. T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, and D. Rugar, Appl. Phys. Lett. 71, 288 (1997). [CrossRef]
  3. J. T. Finer, R. M. Simmons, and J. A. Spudich, Nature 368, 113 (1994). [CrossRef]
  4. M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, Science 276, 1109 (1997). [CrossRef]
  5. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004). [CrossRef]
  6. J. L. Arlett, E. B. Myers, and M. L. Roukes, Nat. Nanotechnol. 6, 203 (2011). [CrossRef]
  7. V. T. Moy, E. L. Florin, and H. E. Gaub, Science 266, 257 (1994). [CrossRef]
  8. H. J. Mamin and D. Rugar, Appl. Phys. Lett. 79, 3358 (2001). [CrossRef]
  9. H. Yamaguchi, Y. Hirayama, S. Miyashita, and S. Ishihara, Appl. Phys. Lett. 86, 052106 (2005). [CrossRef]
  10. O. Usenko, A. Vinante, G. Wijts, and T. H. Oosterkamp, Appl. Phys. Lett. 98, 133105 (2011). [CrossRef]
  11. D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Nature 430, 329 (2004). [CrossRef]
  12. H. B. Chan, Science 291, 1941 (2001). [CrossRef]
  13. E. Gavartin, P. Verlot, and T. J. Kippenberg, Nat. Nanotechnol. 7, 509 (2012). [CrossRef]
  14. J. Moser, J. Guttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, Nat. Nanotechnol. 8, 493 (2013). [CrossRef]
  15. T. Wieduwilt, S. Brückner, and H. Bartelt, Meas. Sci. Technol. 22, 075201 (2011). [CrossRef]
  16. W. Luo, J.-L. Kou, Y. Chen, F. Xu, and Y.-Q. Lu, Appl. Phys. Lett. 101, 133502 (2012). [CrossRef]
  17. K. M. Chung, Z. Liu, C. Lu, and H.-Y. Tam, IEEE Photon. Technol. Lett. 24, 700 (2012). [CrossRef]
  18. Y. Gong, C.-B. Yu, T.-T. Wang, X.-P. Liu, Y. Wu, Y.-J. Rao, M.-L. Zhang, H.-J. Wu, X.-X. Chen, and G.-D. Peng, Opt. Express 22, 3578 (2014). [CrossRef]
  19. Y. Chen, S.-C. Yan, X. Zheng, F. Xu, and Y.-Q. Lu, Opt. Express 22, 2443 (2014). [CrossRef]
  20. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, Meas. Sci. Technol. 18, 3049 (2007). [CrossRef]
  21. O. C. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, J. Microelectromech. Syst. 21, 1347 (2012). [CrossRef]
  22. W. Jo, O. C. Akkaya, O. Solgaard, and M. J. F. Digonnet, Opt. Fiber Technol. 19, 785 (2013). [CrossRef]
  23. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, Appl. Phys. Lett. 82, 1999 (2003). [CrossRef]
  24. D. C. Giancoli, Physics: Principles and Applications (Pearson Education, 2014).
  25. O. Kilic, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, J. Acoust. Soc. Am. 129, 1837 (2011). [CrossRef]
  26. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, 1959).
  27. J. Degallaix, R. Flaminio, D. Forest, M. Granata, C. Michel, L. Pinard, T. Bertrand, and G. Cagnoli, Opt. Lett. 38, 2047 (2013). [CrossRef]
  28. A. B. Churnside, R. M. A. Sullan, D. M. Nguyen, S. O. Case, M. S. Bull, G. M. King, and T. T. Perkins, Nano Lett. 12, 3557 (2012). [CrossRef]
  29. I. W. Jung, B. Park, J. Provine, and R. T. Howe, J. Lightwave Technol. 29, 1367 (2011). [CrossRef]
  30. A. Wang and M. J. Butte, Department of Pediatrics, Division of Immunology, and Allergy, Stanford University, Stanford, California 94305, USA, are preparing a manuscript to be called “Customized atomic force microscopy tip by focused-ion-beam-assisted tip transfer.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited