OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4537–4540

Controllable single-mode random laser using stimulated Raman gain

Ehsan Shojaie, Azam Mirzaei, and Alireza Bahrampour  »View Author Affiliations

Optics Letters, Vol. 39, Issue 15, pp. 4537-4540 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The present study demonstrates numerically a novel approach to perform a controllable single-mode random laser, using stimulated Raman gain. Due to the narrow linewidth of the Raman line shape, only one of the modes of the passive random system can lase. The robust control on the emission spectrum was achieved through the selection of any desired quasi-modes, by adjusting the pump wavelength in order to place the center of Raman line shape on desired quasi-modes. This approach was proved using a developed nonlinear transfer matrix method for a 1D Raman random system. The proposed method includes the Raman gain saturation and the frequency-dependent index of refraction.

© 2014 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable
(190.5650) Nonlinear optics : Raman effect
(290.4210) Scattering : Multiple scattering

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 6, 2014
Revised Manuscript: June 23, 2014
Manuscript Accepted: June 25, 2014
Published: July 29, 2014

Ehsan Shojaie, Azam Mirzaei, and Alireza Bahrampour, "Controllable single-mode random laser using stimulated Raman gain," Opt. Lett. 39, 4537-4540 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. S. Wiersma, Nat. Phys. 4, 359 (2008). [CrossRef]
  2. D. S. Wiersma, Nat. Photonics 7, 188 (2013). [CrossRef]
  3. B. Redding, M. A. Choma, and H. Cao, Nat. Photonics 6, 355 (2012). [CrossRef]
  4. V. Folli, N. Ghofraniha, A. Puglisi, L. Leuzzi, and C. Conti, Sci. Rep. 3, 1 (2013). [CrossRef]
  5. N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, Phys. Rev. Lett. 109, 033903 (2012). [CrossRef]
  6. J. Andreasen, N. Bachelard, S. B. N. Bhaktha, H. Cao, P. Sebbah, and C. Vanneste, Int. J. Mod. Phys. B 28, 1430001 (2014). [CrossRef]
  7. D. S. Wiersma and S. Cavalieri, Nature 414, 708 (2001). [CrossRef]
  8. A. G. Ardakani, A. R. Bahrampour, S. M. Mahdavi, and M. Hosseini, J. Appl. Phys. 112, 043111 (2012). [CrossRef]
  9. S. Gottardo, P. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, Nat. Photonics 2, 429 (2008). [CrossRef]
  10. C. Vanneste and P. Sebbah, Phys. Rev. Lett. 87, 183903 (2001). [CrossRef]
  11. X. Wu, J. Andreasen, H. Cao, and A. Yamilov, J. Opt. Soc. Am. B 24, A26 (2007). [CrossRef]
  12. M. Leonetti and C. López, Appl. Phys. Lett. 102, 071105 (2013). [CrossRef]
  13. N. Bachelard, S. Gigan, X. Noblin, and P. Sebbah, Nat. Phys. 10, 426 (2014). [CrossRef]
  14. A. K. Tiwari, K. S. Alee, R. Uppu, and S. Mujumdar, Appl. Phys. Lett. 104, 131112 (2014). [CrossRef]
  15. J. Andreasen, C. Vanneste, L. Ge, and H. Cao, Phys. Rev. A 81, 043818 (2010). [CrossRef]
  16. J. Andreasen and H. Cao, Opt. Lett. 34, 3586 (2009). [CrossRef]
  17. A. R. Bahrampour and F. Bazouband, Opt. Commun. 282, 1648 (2009). [CrossRef]
  18. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002). [CrossRef]
  19. M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L. Sivco, and A. Y. Cho, Nature 433, 845 (2005). [CrossRef]
  20. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, Nature 433, 725 (2005). [CrossRef]
  21. F. Anquez, E. Courtade, A. Sivéry, P. Suret, and S. Randoux, Opt. Express 18, 22928 (2010). [CrossRef]
  22. S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, Opt. Express 15, 8438 (2007). [CrossRef]
  23. S. E. Skipetrov, Nature 432, 285 (2004). [CrossRef]
  24. A. E. Perkins and N. M. Lawandy, Opt. Commun. 162, 191 (1999). [CrossRef]
  25. B. H. Hokr and V. V. Yakovlev, Opt. Express 21, 11757 (2013). [CrossRef]
  26. Q. Baudouin, N. Mercadier, V. Guarrera, W. Guerin, and R. Kaiser, Nat. Phys. 9, 357 (2013). [CrossRef]
  27. W. Guerin, N. Mercadier, D. Brivio, and R. Kaiser, Opt. Express 17, 11236 (2009). [CrossRef]
  28. J. Bingi, A. R. Warrier, and C. Vijayan, Appl. Phys. Lett. 102, 221105 (2013). [CrossRef]
  29. A. R. Bahrampour, E. Shojaie, and M. Sani, J. Opt. Soc. Am. B 31, 1308 (2014). [CrossRef]
  30. A. G. Ardakani, A. R. Bahrampour, S. M. Mahdavi, and M. Golshani, Opt. Commun. 285, 1314 (2012). [CrossRef]
  31. P. Szczepański, T. Osuch, and Z. Jaroszewicz, Appl. Opt. 48, 5401 (2009). [CrossRef]
  32. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited