OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4611–4614

Temporal cloaking with accelerating wave packets

Ioannis Chremmos  »View Author Affiliations

Optics Letters, Vol. 39, Issue 15, pp. 4611-4614 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (352 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically propose a temporal cloaking scheme based on accelerating wave packets. A part of a monochromatic light wave is endowed with a discontinuous nonlinear frequency chirp, so that two opposite accelerating caustics are created in space–time as the different frequency components propagate in the presence of dispersion. The two caustics open a biconvex time gap that contains negligible optical energy, thus concealing the enclosed events. In contrast to previous temporal cloaking schemes, where light propagates successively through two different media with opposite dispersions, accelerating wave packets open and close the cloaked time window continuously in a single dispersive medium. In addition, biconvex time gaps can be tailored into arbitrary shapes and offer a larger suppression of intensity compared with their rhombic counterparts.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(080.0080) Geometric optics : Geometric optics
(260.2030) Physical optics : Dispersion
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Optical Devices

Original Manuscript: June 18, 2014
Revised Manuscript: July 1, 2014
Manuscript Accepted: July 1, 2014
Published: July 31, 2014

Ioannis Chremmos, "Temporal cloaking with accelerating wave packets," Opt. Lett. 39, 4611-4614 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006). [CrossRef]
  2. U. Leonhardt, Science 312, 1777 (2006). [CrossRef]
  3. A. Greenleaf, M. Lassas, and G. Uhlmann, Physiol. Meas. 24, 413 (2003). [CrossRef]
  4. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, Science 314, 977 (2006). [CrossRef]
  5. W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, Nat. Photonics 1, 224 (2007). [CrossRef]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, Nat. Mater. 8, 568 (2009). [CrossRef]
  7. L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, Nat. Photonics 3, 461 (2009). [CrossRef]
  8. S. Zhang, in Transformation Electromagnetics and Metamaterials, D. H. Werner and D.-H. Kwon, eds. (Springer, 2014), pp. 289–314.
  9. M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman, J. Opt. 13, 024003 (2011). [CrossRef]
  10. P. Kinsler and M. W. McCall, Ann. Phys. 526, 51 (2014). [CrossRef]
  11. M. Fridman, A. Farsi, Y. Okawachi, and A. Gaeta, Nature 481, 62 (2012). [CrossRef]
  12. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, Opt. Lett. 33, 1047 (2008). [CrossRef]
  13. J. Lukens, D. Leaird, and A. Weiner, Nature 498, 205 (2013). [CrossRef]
  14. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007). [CrossRef]
  15. N. K. Efremidis and D. N. Christodoulides, Opt. Lett. 35, 4045 (2010). [CrossRef]
  16. I. Chremmos, P. Zhang, J. Prakash, N. Efremidis, D. Christodoulides, and Z. Chen, Opt. Lett. 36, 3675 (2011). [CrossRef]
  17. I. Chremmos, Z. Chen, D. Christodoulides, and N. Efremidis, Phys. Rev. A 85, 023828 (2012). [CrossRef]
  18. R. B. Li, L. Deng, E. W. Hagley, J. C. Bienfang, M. G. Payne, and M.-L. Ge, Phys. Rev. A 87, 023839 (2013). [CrossRef]
  19. I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, Opt. Lett. 36, 1890 (2011). [CrossRef]
  20. G. Agrawal, Nonlinear Fiber Optics, 5th ed., Series in Optics and Photonics (Academic, 2012).
  21. L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press Series on Electromagnetic Wave Theory (Wiley, 1994).
  22. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000). [CrossRef]
  23. I. Besieris and A. Shaarawi, Phys. Rev. E 78, 046605 (2008). [CrossRef]
  24. R. Driben, Y. Hu, Z. Chen, B. A. Malomed, and R. Morandotti, Opt. Lett. 38, 2499 (2013). [CrossRef]
  25. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, Opt. Express 21, 14481 (2013). [CrossRef]
  26. A. Chong, W. Renninger, D. Christodoulides, and F. Wise, Nat. Photonics 4, 103 (2010). [CrossRef]
  27. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, Phys. Rev. Lett. 105, 253901 (2010). [CrossRef]
  28. A. Farsi, M. Fridman, and A. L. Gaeta, in CLEO (Optical Society of America, 2013), paper CM3L.1.
  29. C. Ament, P. Polynkin, and J. V. Moloney, Phys. Rev. Lett. 107, 243901 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited