OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 15 — Aug. 1, 2014
  • pp: 4615–4618

Two-tone frequency-modulation stimulated Rayleigh spectroscopy

Gregory W. Faris, Ashot Markosyan, Christina L. Porter, and Sage Doshay  »View Author Affiliations

Optics Letters, Vol. 39, Issue 15, pp. 4615-4618 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated two-tone frequency-modulation (FM) stimulated Rayleigh spectroscopy. This method can provide high spectral resolution (1MHz), excellent pump/probe detuning accuracy, and near-shot-noise-limited signal-to-noise ratios using a single narrowband laser as the master oscillator. Pump/probe detuning and FM sideband generation are produced with an electro-optic modulator. A double-pass two-rod Nd:YAG amplifier provides peak powers near 1 kW for the pump beam. Unlike with two-tone FM absorption spectroscopy, the phase signal is retained for two-tone FM Rayleigh spectroscopy. Measurements confirm that the shape of the phase component of the stimulated thermal Rayleigh peak agrees with theory.

© 2014 Optical Society of America

OCIS Codes
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.5890) Nonlinear optics : Scattering, stimulated
(290.5870) Scattering : Scattering, Rayleigh
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6420) Spectroscopy : Spectroscopy, nonlinear

ToC Category:

Original Manuscript: June 12, 2014
Manuscript Accepted: June 30, 2014
Published: July 31, 2014

Gregory W. Faris, Ashot Markosyan, Christina L. Porter, and Sage Doshay, "Two-tone frequency-modulation stimulated Rayleigh spectroscopy," Opt. Lett. 39, 4615-4618 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).
  2. D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Lett. 19, 828 (1967). [CrossRef]
  3. D. W. Pohl, S. E. Schwarz, and V. Irniger, Phys. Rev. Lett. 31, 32 (1973). [CrossRef]
  4. H. Eichler, G. Salje, and H. Stahl, J. Appl. Phys. 44, 5383 (1973). [CrossRef]
  5. J. H. Grinstead and P. F. Barker, Phys. Rev. Lett. 85, 1222 (2000). [CrossRef]
  6. S. Takagi and H. Tanaka, Rev. Sci. Instrum. 73, 3337 (2002). [CrossRef]
  7. G. W. Faris, M. Gerken, C. Jirauschek, D. Hogan, and Y. Chen, Opt. Lett. 26, 1894 (2001). [CrossRef]
  8. C. Jirauschek, E. M. Jeffrey, and G. W. Faris, Phys. Rev. Lett. 87, 233902 (2001). [CrossRef]
  9. W. Kaiser and M. Maier, in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, 1972), Vol. 2, pp. 1077–1150.
  10. R. W. Boyd, in Nonlinear Optics (Academic/Elsevier, 2008), pp. 429–471.
  11. R. M. Herman and M. A. Gray, Phys. Rev. Lett. 19, 824 (1967). [CrossRef]
  12. K. S. Kalogerakis, B. H. Blehm, R. E. Forman, C. Jirauschek, and G. W. Faris, J. Opt. Soc. Am. B 24, 2040 (2007). [CrossRef]
  13. G. W. Faris, M. J. Dyer, and W. K. Bischel, Opt. Lett. 19, 1529 (1994). [CrossRef]
  14. K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371 (1991). [CrossRef]
  15. T. Sonehara, Y. Konno, H. Kaminaga, S. Saikan, and S. Ohno, J. Opt. Soc. Am. B 24, 1193 (2007). [CrossRef]
  16. G. C. Bjorklund, Opt. Lett. 5, 15 (1980). [CrossRef]
  17. G. R. Janik, C. B. Carlisle, and T. F. Gallagher, J. Opt. Soc. Am. B 3, 1070 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited