OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 16 — Aug. 15, 2014
  • pp: 4643–4646

Continuously tuning effective refractive index based on thermally controllable magnetic metamaterials

Xinning Yu, Huajin Chen, Haixiao Lin, Jialin Zhou, Jingjing Yu, Chunxiu Qian, and Shiyang Liu  »View Author Affiliations

Optics Letters, Vol. 39, Issue 16, pp. 4643-4646 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By employing a thermally active magnetic material, we theoretically design a kind of electromagnetic metamaterial with intrinsic magnetic response, termed magnetic metamaterial (MM). The retrieved effective electric permittivity εeff and magnetic permeability μeff exhibit a nearly continuous transition from double negative to double zero, and then to double positive by controlling the temperature, indicating a flexible tunability of the effective refractive index. The beam splitting, collimation, focusing, and total reflection are achieved at different typical temperatures. Most importantly, with the MM implemented under a gradient temperature, a gradient negative-zero-positive index metamaterial (NZPIM) can possibly be realized, thus providing a new platform to study wave features in NZPIM.

© 2014 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:

Original Manuscript: May 12, 2014
Revised Manuscript: June 28, 2014
Manuscript Accepted: July 1, 2014
Published: August 4, 2014

Xinning Yu, Huajin Chen, Haixiao Lin, Jialin Zhou, Jingjing Yu, Chunxiu Qian, and Shiyang Liu, "Continuously tuning effective refractive index based on thermally controllable magnetic metamaterials," Opt. Lett. 39, 4643-4646 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. I. Zheludev, Science 328, 582 (2010). [CrossRef]
  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000). [CrossRef]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001). [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006). [CrossRef]
  5. D. Schurig, J. Mock, B. Justice, S. Cummer, J. B. Pendry, A. Starr, and D. R. Smith, Science 314, 977 (2006). [CrossRef]
  6. N. F. Yu and F. Capasso, Nat. Mater. 13, 139 (2014). [CrossRef]
  7. N. Fang, H. Lee, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005). [CrossRef]
  8. M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006). [CrossRef]
  9. E. Ozbay, Science 311, 189 (2006). [CrossRef]
  10. K. Busch and S. John, Phys. Rev. Lett. 83, 967 (1999). [CrossRef]
  11. M. Golosovsky, Y. Saado, and D. Davidov, Appl. Phys. Lett. 75, 4168 (1999). [CrossRef]
  12. A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, Phys. Rev. Lett. 110, 037403 (2013). [CrossRef]
  13. P. Halevi and F. Ramos-Mendieta, Phys. Rev. Lett. 85, 1875 (2000). [CrossRef]
  14. X. Y. Hu, P. Jian, C. Y. Ding, H. Yang, and Q. H. Gong, Nat. Photonics 2, 185 (2008). [CrossRef]
  15. S. Y. Liu, J. J. Du, Z. F. Lin, R. X. Wu, and S. T. Chui, Phys. Rev. B 78, 155101 (2008). [CrossRef]
  16. S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, Phys. Rev. Lett. 101, 157407 (2008). [CrossRef]
  17. S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, Phys. Rev. B 84, 045425 (2011). [CrossRef]
  18. Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, and S. T. Chui, Appl. Phys. Lett. 101, 081912 (2012). [CrossRef]
  19. H. A. Algra and P. Hansen, Appl. Phys. A 29, 83 (1982). [CrossRef]
  20. K. Bi, G. Y. Dong, X. J. Fu, and J. Zhou, Appl. Phys. Lett. 103, 131915 (2013). [CrossRef]
  21. M. Shen, L. X. Ruan, X. L. Wang, J. L. Shi, and Q. Wang, Phys. Rev. A 83, 045804 (2011). [CrossRef]
  22. V. Yannopapas and A. Vanakaras, Phys. Rev. B 84, 045128 (2011). [CrossRef]
  23. N. M. Litchinitser, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, Opt. Lett. 33, 2350 (2008). [CrossRef]
  24. Y. S. Ding, C. T. Chan, and R. P. Wang, Sci. Rep. 3, 2954 (2013).
  25. D. M. Pozar, Microwave Engineering (Wiley, New York, 2004).
  26. J. J. Jin, S. Y. Liu, Z. F. Lin, and S. T. Chui, Phys. Rev. B 80, 115101 (2009). [CrossRef]
  27. X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, Nat. Mater. 10, 582 (2011). [CrossRef]
  28. J. J. Yu, H. J. Chen, Y. B. Wu, and S. Y. Liu, EPL 100, 47007 (2012).
  29. V. V. Kotlyar and A. G. Nalimov, Opt. Express 14, 6316 (2006). [CrossRef]
  30. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B 75, 155410 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited