OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 16 — Aug. 15, 2014
  • pp: 4675–4678

Nonlinear switching in a two-concentric-core chalcogenide glass optical fiber for passively mode-locking a fiber laser

Elham Nazemosadat and Arash Mafi  »View Author Affiliations


Optics Letters, Vol. 39, Issue 16, pp. 4675-4678 (2014)
http://dx.doi.org/10.1364/OL.39.004675


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an all-fiber mode-locking device, which operates based on nonlinear switching in a novel two-concentric-core fiber structure. The design is particularly attractive given the ease of fabrication and coupling to other components in a mode-locked fiber laser cavity. The nonlinear switching in this coupler is studied, and the relative power transmission is obtained. The analysis shows that this nonlinear switch is practical for mode-locking fiber lasers and is forgiving to fabrication errors.

© 2014 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.4320) Optical devices : Nonlinear optical devices
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 2, 2014
Revised Manuscript: July 1, 2014
Manuscript Accepted: July 4, 2014
Published: August 5, 2014

Citation
Elham Nazemosadat and Arash Mafi, "Nonlinear switching in a two-concentric-core chalcogenide glass optical fiber for passively mode-locking a fiber laser," Opt. Lett. 39, 4675-4678 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-16-4675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. G. Winful and D. T. Walton, Opt. Lett. 17, 1688 (1992). [CrossRef]
  2. J. L. Proctor and J. N. Kutz, Opt. Lett. 30, 2013 (2005). [CrossRef]
  3. D. D. Hudson, K. Shish, T. R. Schibli, J. N. Kutz, D. N. Christodoulides, R. Morandotti, and S. T. Cundiff, Opt. Lett. 33, 1440 (2008). [CrossRef]
  4. Q. Chao, D. D. Hudson, J. N. Kutz, and S. T. Cundiff, IEEE Photon. J. 4, 1438 (2012). [CrossRef]
  5. T. F. S. Büttner, D. D. Hudson, E. C. Mägi, A. C. Bedoya, T. Taunay, and B. J. Eggleton, Opt. Lett. 37, 2469 (2012). [CrossRef]
  6. E. Nazemosadat and A. Mafi, J. Opt. Soc. Am. B 30, 1357 (2013). [CrossRef]
  7. E. Nazemosadat and A. Mafi, Opt. Express 21, 30739 (2013). [CrossRef]
  8. E. Nazemosadat and A. Mafi, J. Opt. Soc. Am. B 30, 2787 (2013). [CrossRef]
  9. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, Electron. Lett. 36, 1689 (2000). [CrossRef]
  10. F. Gérôme, J.-L. Auguste, J. Maury, J.-M. Blondy, and J. Marcou, J. Lightwave Technol. 24, 442 (2006). [CrossRef]
  11. J. R. Cozens and A. C. Boucouvalas, Electron. Lett. 18, 138 (1982). [CrossRef]
  12. A. Zakery and M. Hatami, J. Phys. D 40, 1010 (2007). [CrossRef]
  13. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, Opt. Lett. 25, 254 (2000). [CrossRef]
  14. A. Mafi, P. Hofmann, C. Salvin, and A. Schülzgen, Opt. Lett. 36, 3596 (2011). [CrossRef]
  15. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  16. S. M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982). [CrossRef]
  17. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, Opt. Lett. 13, 904 (1988). [CrossRef]
  18. F. Poletti and P. Horak, J. Opt. Soc. Am. B 25, 1645 (2008). [CrossRef]
  19. A. Mafi, J. Lightwave Technol. 30, 2803 (2012). [CrossRef]
  20. T. A. Lenahan, Bell Syst. Tech. J. 62, 2663 (1983). [CrossRef]
  21. L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, Opt. Express 13, 7637 (2005). [CrossRef]
  22. “Specification sheet for product AMTIR-2” (Amorphous Materials Inc., 2009). http://www.amorphousmaterials.com .
  23. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, IEEE Photon. Technol. Lett. 8, 1510 (1996). [CrossRef]
  24. K. Abedin, Opt. Express 13, 10266 (2005). [CrossRef]
  25. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013).
  26. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006). [CrossRef]
  27. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, Opt. Express 14, 7924 (2006). [CrossRef]
  28. V. G. Taeed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, Opt. Express 15, 9205 (2007). [CrossRef]
  29. E. Nazemosadat and A. Mafi, “Design considerations for multi-core optical fibers in nonlinear switching and mode-locking applications,” arXiv:1405.1368 (2014).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited