OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 16 — Aug. 15, 2014
  • pp: 4823–4826

Lattice plasmon resonance in core-shell SiO2/Au nanocylinder arrays

Linhan Lin and Yasha Yi  »View Author Affiliations

Optics Letters, Vol. 39, Issue 16, pp. 4823-4826 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Core-shell SiO2/Au nanocylinder arrays (NCAs) are studied using finite-difference time-domain simulations. The increase of height induces new surface plasmon resonances along the nanocylinders, i.e., dipole and quadrupole modes. Orthogonal coupling between superstrate diffraction order and the height-induced dipole mode is observed, which could achieve a well-defined lattice plasmon mode even for smaller NCAs in asymmetric environments. Electromagnetic field distribution has been employed to determine the coupling origin. Radiative loss could also be effectively suppressed in these core-shell NCAs, indicating the possibility of future applications in fluorescence enhancement and nanolasers.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(160.4236) Materials : Nanomaterials

ToC Category:
Physical Optics

Original Manuscript: June 6, 2014
Revised Manuscript: July 10, 2014
Manuscript Accepted: July 10, 2014
Published: August 12, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Linhan Lin and Yasha Yi, "Lattice plasmon resonance in core-shell SiO2/Au nanocylinder arrays," Opt. Lett. 39, 4823-4826 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Oubre and P. Nordlander, J. Phys. Chem. B 108, 17740 (2004). [CrossRef]
  2. C. Radloff and N. J. Halas, Nano Lett. 4, 1323 (2004). [CrossRef]
  3. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, Chem. Rev. 111, 3913 (2011). [CrossRef]
  4. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem. Rev. 111, 3669 (2011). [CrossRef]
  5. M. I. Stockman, Opt. Express 19, 22029 (2011). [CrossRef]
  6. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nat. Mater. 8, 867 (2009). [CrossRef]
  7. H. Shen, G. Lu, T. Zhang, J. Liu, Y. Gu, P. Perriat, M. Martini, O. Tillement, and Q. Gong, Nanotechnology 24, 285502 (2013). [CrossRef]
  8. B. P. Khanal, A. Pandey, L. Li, Q. Lin, W. K. Bae, H. Luo, V. I. Klimov, and J. M. Pietryga, ACS Nano 6, 3832 (2012). [CrossRef]
  9. S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, ACS Nano 8, 4440 (2014). [CrossRef]
  10. J. Ye, F. F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, Nano Lett. 12, 1660 (2012). [CrossRef]
  11. V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, Nat. Commun 5, 3448 (2014). [CrossRef]
  12. E. M. Hicks, S. L. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Kall, Nano Lett. 5, 1065 (2005). [CrossRef]
  13. B. Auguie and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008). [CrossRef]
  14. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, Appl. Phys. Lett. 93, 181108 (2008). [CrossRef]
  15. V. G. Kravets, F. Schedin, and A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008). [CrossRef]
  16. A. G. Nikitin, T. Nguyen, and H. Dallaporta, Appl. Phys. Lett. 102, 221116 (2013). [CrossRef]
  17. A. G. Nikitin, Appl. Phys. Lett. 104, 061107 (2014). [CrossRef]
  18. A. Vitrey, L. Aigouy, P. Prieto, J. M. García-Martín, and M. U. González, Nano Lett. 14, 2079 (2014). [CrossRef]
  19. M. Meier, A. Wokaun, and P. F. Liao, J. Opt. Soc. Am. B 2, 931 (1985). [CrossRef]
  20. V. A. Markel, J. Mod. Opt. 40, 2281 (1993). [CrossRef]
  21. V. A. Markel, J. Phys. B 38, L115 (2005). [CrossRef]
  22. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, ACS Nano 5, 5151 (2011). [CrossRef]
  23. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Goncalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, ACS Nano 5, 4843 (2011). [CrossRef]
  24. B. Spackova and J. Homola, Opt. Express 21, 27490 (2013). [CrossRef]
  25. W. Zhou and T. W. Odom, Nat. Nanotechnol. 6, 423 (2011). [CrossRef]
  26. W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, J. Phys. Chem. Lett. 3, 1381 (2012). [CrossRef]
  27. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, Nat. Nanotechnol. 8, 506 (2013). [CrossRef]
  28. L. K. Ausman, S. Li, and G. C. Schatz, J. Phys. Chem. C 116, 17318 (2012). [CrossRef]
  29. B. Auguie, X. M. Bendana, W. L. Barnes, and F. J. Garcia de Abajo, Phys. Rev. B 82, 155447 (2010). [CrossRef]
  30. S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, Phys. Rev. B 66, 155431 (2002). [CrossRef]
  31. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003). [CrossRef]
  32. J. P. Kottmann and O. J. F. Martin, Opt. Lett. 26, 1096 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited