OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 16 — Aug. 15, 2014
  • pp: 4851–4854

Combining cw-seeding with highly nonlinear fibers in a broadly tunable femtosecond optical parametric amplifier at 42  MHz

Tobias Steinle, Stefan Kedenburg, Andy Steinmann, and Harald Giessen  »View Author Affiliations


Optics Letters, Vol. 39, Issue 16, pp. 4851-4854 (2014)
http://dx.doi.org/10.1364/OL.39.004851


View Full Text Article

Enhanced HTML    Acrobat PDF (670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a precisely tunable and highly stable femtosecond oscillator-pumped optical parametric amplifier at a 41.7 MHz repetition rate for spectroscopic applications. A novel concept based on cw-seeding of a first amplification stage with subsequent spectral broadening and shaping, followed by two further amplification stages, allows for precise sub-nanometer and gap-free tuning from 1.35 to 1.75 μm and 2.55 to 4.5 μm. Excellent spectral stability is demonstrated with deviations of less than 0.008% rms central wavelength and 1.6% rms bandwidth over 1 h. Spectral shaping of the seed pulse allows precise adjustment of both the bandwidth and the pulse duration over a broad range at a given central wavelength. Transform-limited pulses nearly as short as 107 fs are achieved. More than half a Watt of average power in the near- and more than 200 mW in the mid-infrared with power fluctuations less than 0.6% rms over 1 h provide an excellent basis for spectroscopic experiments. The pulse-to-pulse power fluctuations are as small as 1.8%. Further, we demonstrate for the first time, to the best of our knowledge, that by using hollow-core capillaries with highly nonlinear liquids as a host medium for self-phase modulation, the signal tuning range can be extended and covers the region from 1.4 μm up to the point of degeneracy at 2.07 μm. Hence, the idler covers 2.07 to 4.0 μm.

© 2014 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 25, 2014
Manuscript Accepted: April 25, 2014
Published: August 13, 2014

Citation
Tobias Steinle, Stefan Kedenburg, Andy Steinmann, and Harald Giessen, "Combining cw-seeding with highly nonlinear fibers in a broadly tunable femtosecond optical parametric amplifier at 42  MHz," Opt. Lett. 39, 4851-4854 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-16-4851

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited