OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 16 — Aug. 15, 2014
  • pp: 4919–4922

Suppression of nonlinear phonon relaxation in Yb:YAG thin disk via zero phonon line pumping

Martin Smrž, Taisuke Miura, Michal Chyla, Siva Nagisetty, Ondřej Novák, Akira Endo, and Tomáš Mocek  »View Author Affiliations

Optics Letters, Vol. 39, Issue 16, pp. 4919-4922 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (743 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A quantitative comparison of conventional absorption line (940 nm) pumping and zero phonon line (ZPL) (969 nm) pumping of a Yb:YAG thin disk laser is reported. Characteristics of an output beam profile, surface temperature, and deformation of a thin disk under the different pump wavelengths are evaluated. We found that a nonlinear phonon relaxation (NPR) of the excited state in Yb:YAG, which induces nonlinear temperature rise and large aspheric deformation, did not appear in the case of a ZPL pumped Yb:YAG thin disk. This means that the advantage of ZPL pumping is not only the reduction of quantum defect but also the suppression of NPR. The latter effect is more important for high power lasers.

© 2014 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 22, 2014
Revised Manuscript: July 10, 2014
Manuscript Accepted: July 14, 2014
Published: August 14, 2014

Martin Smrž, Taisuke Miura, Michal Chyla, Siva Nagisetty, Ondřej Novák, Akira Endo, and Tomáš Mocek, "Suppression of nonlinear phonon relaxation in Yb:YAG thin disk via zero phonon line pumping," Opt. Lett. 39, 4919-4922 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Lacovara, H. Choi, C. Wang, R. Aggarwal, and T. Fan, Opt. Lett. 16, 1089 (1991). [CrossRef]
  2. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, J. Opt. Soc. Am. B 20, 1975 (2003). [CrossRef]
  3. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994). [CrossRef]
  4. M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2005), paper TuB49.
  5. T. Kasamatsu, H. Sekita, and Y. Kuwano, Appl. Opt. 38, 5149 (1999). [CrossRef]
  6. B. Weichelt, A. Voss, M. Ahmed, and T. Graf, Opt. Lett. 37, 3045 (2012). [CrossRef]
  7. L. Glebov, G. Wood, and M. Dubinskii, Proc. SPIE 6216, 621601 (2006). [CrossRef]
  8. J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. C. Kaluza, Appl. Phys. B 116, 75 (2014). [CrossRef]
  9. C. Brandt, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, Appl. Phys. B 102, 765 (2011). [CrossRef]
  10. J. Perchermeier and U. Wittrock, Opt. Lett. 38, 2422 (2013). [CrossRef]
  11. B. Schäfer, J. Gloger, U. Leinhos, and K. Mann, Opt. Express 17, 23025 (2009). [CrossRef]
  12. S. Chenais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. Aka, and D. Vivien, Opt. Mater. 22, 129 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited