OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 17 — Sep. 1, 2014
  • pp: 4986–4989

Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot–metallic nanoshell structures

S. M. Sadeghi  »View Author Affiliations

Optics Letters, Vol. 39, Issue 17, pp. 4986-4989 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton–plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

© 2014 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.6000) Materials : Semiconductor materials
(260.5430) Physical optics : Polarization
(270.0270) Quantum optics : Quantum optics
(320.4240) Ultrafast optics : Nanosecond phenomena
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: June 27, 2014
Revised Manuscript: July 22, 2014
Manuscript Accepted: July 22, 2014
Published: August 18, 2014

S. M. Sadeghi, "Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot–metallic nanoshell structures," Opt. Lett. 39, 4986-4989 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. Sönnichsen, Nano Lett. 8, 2345 (2008). [CrossRef]
  2. P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, Phys. Rev. B 80, 153409 (2009). [CrossRef]
  3. E. Öğüt and K. Şendur, Appl. Phys. Lett. 96, 141104 (2010). [CrossRef]
  4. J. Li, S. Chen, P. Yu, H. Cheng, X. Duan, and J. Tian, Opt. Express 21, 10342 (2013). [CrossRef]
  5. A. Roberts and L. Lin, Opt. Lett. 37, 1820 (2012). [CrossRef]
  6. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, Opt. Lett. 38, 513 (2013). [CrossRef]
  7. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, Phys. Rev. B 83, 235406 (2011). [CrossRef]
  8. S. M. Sadeghi, Nanotechnology 20, 225401 (2009). [CrossRef]
  9. S. M. Sadeghi, Phys. Rev. B 79, 233309 (2009). [CrossRef]
  10. M.-T. Cheng, S.-D. Liu, H.-J. Hao, and Q.-Q. Wang, Opt. Lett. 32, 2125 (2007). [CrossRef]
  11. M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, Appl. Phys. Lett. 92, 162107 (2008). [CrossRef]
  12. J. D. Cox, M. R. Singh, C. von Bilderling, and A. V. Bragas, Adv. Opt. Mater. 1, 460 (2013).
  13. M. R. Singh, Nanotechnology 24, 125701 (2013). [CrossRef]
  14. R. D. Artuso and G. W. Bryant, Nano Lett. 8, 2106 (2008). [CrossRef]
  15. A. V. Malyshev and V. A. Malyshev, Phys. Rev. B 84, 035314 (2011). [CrossRef]
  16. J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, Opt. Express 20, 1856 (2012). [CrossRef]
  17. E. Paspalakis, S. Evangelou, S. G. Kosionis, and A. F. Terzis, J. Appl. Phys. 115, 083106 (2014). [CrossRef]
  18. S. G. Kosionis, A. F. Terzis, V. Yannopapas, and E. Paspalakis, J. Phys. Chem. C 116, 23663 (2012). [CrossRef]
  19. A. O. Govorov and I. Carmeli, Nano Lett. 7, 620 (2007). [CrossRef]
  20. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002). [CrossRef]
  21. S. M. Sadeghi, Appl. Phys. Lett. 101, 213102 (2012). [CrossRef]
  22. O. Fedorych, C. Kruse, A. Ruban, D. Hommel, G. Bacher, and T. Kümmell, Appl. Phys. Lett. 100, 061114 (2012). [CrossRef]
  23. S. M. Sadeghi, Phys. Rev. B 82, 035413 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited