OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 17 — Sep. 1, 2014
  • pp: 5002–5005

All-solution-processed, multilayered CuInS2/ZnS colloidal quantum-dot-based electroluminescent device

Jong-Hoon Kim and Heesun Yang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 17, pp. 5002-5005 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



While significant progress of electroluminescent (EL) quantum dot light-emitting diodes (QD-LEDs) that rely exclusively on Cd-containing II–VI quantum dots (QDs) has been reported over the past two decades with respect to device processing and performance, devices based on non-Cd QDs as an active emissive layer (EML) remain at the early stage of development. In this work, utilizing highly luminescent colloidal CuInS2 (CIS)/ZnS QDs, all-solution-processed multilayered QD-LEDs are fabricated by sequentially spin depositing a hole transport layer of poly(9-vinlycarbazole), an EML of CIS/ZnS QDs, and an electron transport layer of ZnO nanoparticles. Our focus in device fabrication is to vary the thickness of the QD EML, which is one of the primary determinants in EL performance but has not been addressed in earlier reports. The device with an optimal EML thickness exhibits a peak luminance of 1564cd/m2 and current efficiency of 2.52cd/A. This record value in efficiency is higher by 3–4 times that of CIS QD-LEDs reported previously.

© 2014 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Devices

Original Manuscript: March 10, 2014
Revised Manuscript: July 22, 2014
Manuscript Accepted: July 22, 2014
Published: August 18, 2014

Jong-Hoon Kim and Heesun Yang, "All-solution-processed, multilayered CuInS2/ZnS colloidal quantum-dot-based electroluminescent device," Opt. Lett. 39, 5002-5005 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Aldakov, A. Lefrancois, and P. Reiss, J. Mater. Chem. C 1, 3756 (2013). [CrossRef]
  2. H. Z. Zhong, Z. L. Bai, and B. S. Zou, J. Phys. Chem. Lett. 3, 3167 (2012). [CrossRef]
  3. X. Yuan, J. L. Zhao, P. T. Jing, W. J. Zhang, H. B. Li, L. G. Zhang, X. H. Zhong, and Y. Masumoto, J. Phys. Chem. C 116, 11973 (2012). [CrossRef]
  4. L. Li, T. J. Daou, I. Texier, T. K. C. Tran, Q. L. Nguyen, and P. Reiss, Chem. Mater. 21, 2422 (2009). [CrossRef]
  5. L. Li, A. Pandey, D. J. Werder, B. P. Khanal, J. M. Pietryga, and V. I. Klimov, J. Am. Chem. Soc. 133, 1176 (2011). [CrossRef]
  6. W. S. Song and H. Yang, Appl. Phys. Lett. 100, 183104 (2012). [CrossRef]
  7. W. S. Song and H. Yang, Chem. Mater. 24, 1961 (2012). [CrossRef]
  8. B. K. Chen, H. Z. Zhong, W. Q. Zhang, Z. A. Tan, Y. F. Li, C. R. Yu, T. Y. Zhai, Y. S. Bando, S. Y. Yang, and B. S. Zou, Adv. Funct. Mater. 22, 2081 (2012). [CrossRef]
  9. J. Kolny-Olesiak and H. Weller, ACS Appl. Mater. Interfaces 5, 12221 (2013). [CrossRef]
  10. Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, J. Phys. Chem. C 115, 1786 (2011). [CrossRef]
  11. T. Uematsu, T. Doi, T. Torimoto, and S. Kuwabata, J. Phys. Chem. Lett. 1, 3283 (2010). [CrossRef]
  12. X. Tang, W. Cheng, E. S. Choo, and J. Xue, Chem. Commun. 47, 5217 (2011). [CrossRef]
  13. L. De Trizio, M. Prato, A. Genovese, A. Casu, M. Povia, R. Simonutti, M. J. P. Alcocer, C. D’Andrea, F. Tassone, and L. Manna, Chem. Mater. 24, 2400 (2012). [CrossRef]
  14. J. Zhang, R. G. Xie, and W. S. Yang, Chem. Mater. 23, 3357 (2011). [CrossRef]
  15. W. Zhang and X. Zhong, Inorg. Chem. 50, 4065 (2011). [CrossRef]
  16. B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, Nanoscale 5, 3514 (2013). [CrossRef]
  17. Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, Nano Lett. 11, 329 (2011). [CrossRef]
  18. Z. Tan, Y. Zhang, C. Xie, H. Su, J. Liu, C. Zhang, N. Dellas, S. E. Mohney, Y. Wang, J. Wang, and J. Xu, Adv. Mater. 23, 3553 (2011). [CrossRef]
  19. W. S. Song, J. H. Kim, J. H. Lee, H. S. Lee, Y. R. Do, and H. Yang, J. Mater. Chem. 22, 21901 (2012). [CrossRef]
  20. X. Y. Yang, Y. Divayana, D. W. Zhao, K. S. Leck, F. Lu, S. T. Tan, A. P. Abiyasa, Y. B. Zhao, H. V. Demir, and X. W. Sun, Appl. Phys. Lett. 101, 233110 (2012). [CrossRef]
  21. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, ACS Nano 7, 9019 (2013). [CrossRef]
  22. K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, ACS Nano 7, 7295 (2013). [CrossRef]
  23. E. Arici, N. S. Sariciftci, and D. Meissner, Adv. Funct. Mater. 13, 165 (2003). [CrossRef]
  24. L. Qian, Y. Zheng, J. G. Xue, and P. H. Holloway, Nat. Photonics 5, 543 (2011). [CrossRef]
  25. D. Bozyigit, O. Yarema, and V. Wood, Adv. Funct. Mater. 23, 3024 (2013). [CrossRef]
  26. W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, Nat. Commun. 4, 2661 (2013).
  27. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Q. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, Nat. Photonics 7, 407 (2013). [CrossRef]
  28. V. Wood, M. J. Panzer, J. M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulovic, Nano Lett. 10, 24 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited