OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 17 — Sep. 1, 2014
  • pp: 5022–5025

Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics

Sicong Wang, Xiangping Li, Jianying Zhou, and Min Gu  »View Author Affiliations

Optics Letters, Vol. 39, Issue 17, pp. 5022-5025 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, based on the Richards and Wolf diffraction theory, an ultralong optical needle with pure transverse polarization is numerically generated by tightly focusing an azimuthally polarized beam through an annular vortex binary filter. Such an ultralong transversely polarized optical needle is generated through the π phase shift between adjacent rings of the binary filter. We show that such a pure transverse optical needle can induce pure longitudinal magnetization with a subwavelength lateral size (0.38λ) and an ultralong longitudinal depth (7.48λ) through the inverse Faraday effect. The corresponding needle aspect ratio of 20 is twice as large as that of the longitudinal magnetization needle generated by electron beam lithography.

© 2014 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(210.3820) Optical data storage : Magneto-optical materials
(260.5430) Physical optics : Polarization

ToC Category:
Diffraction and Gratings

Original Manuscript: June 16, 2014
Manuscript Accepted: July 19, 2014
Published: August 19, 2014

Sicong Wang, Xiangping Li, Jianying Zhou, and Min Gu, "Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics," Opt. Lett. 39, 5022-5025 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, J. Appl. Phys. 76, 6673 (1994). [CrossRef]
  2. S. A. Nikitov, Ph. Tailhades, and C. S. Tsai, J. Magn. Magn. Mater. 236, 320 (2001). [CrossRef]
  3. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature 455, 515 (2008). [CrossRef]
  4. I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, J. Phys. D 36, R277 (2003). [CrossRef]
  5. P. D. Ye, D. Weiss, R. R. Gerhardts, M. Seeger, K. von Klitzing, K. Eberl, and H. Nickel, Phys. Rev. Lett. 74, 3013 (1995). [CrossRef]
  6. M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, and W. Ketterle, Phys. Rev. Lett. 77, 416 (1996). [CrossRef]
  7. C. V. Saba, P. A. Barton, M. G. Boshier, I. G. Hughes, P. Rosenbusch, B. E. Sauer, and E. A. Hinds, Phys. Rev. Lett. 82, 468 (1999). [CrossRef]
  8. L. P. Pitaevskii, Sov. Phys. JETP-USSR 12, 1008 (1961).
  9. P. S. Pershan, Phys. Rev. 130, 919 (1963). [CrossRef]
  10. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, Phys. Rev. Lett. 15, 190 (1965). [CrossRef]
  11. P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, Phys. Rev. 143, 574 (1966). [CrossRef]
  12. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, Nature 435, 655 (2005). [CrossRef]
  13. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, Phys. Rev. Lett. 99, 047601 (2007). [CrossRef]
  14. A. V. Kimel, A. Kirilyuk, and Th. Rasing, Laser Photon. Rev. 1, 275 (2007). [CrossRef]
  15. Y. J. Zhang, Y. Okuno, and X. Xu, J. Opt. Soc. Am. B 26, 1379 (2009). [CrossRef]
  16. K. Kitamura, K. Sakai, and S. Noda, Opt. Express 18, 4518 (2010). [CrossRef]
  17. J. Lin, K. Yin, Y. Li, and J. Tan, Opt. Lett. 36, 1185 (2011). [CrossRef]
  18. H. Dehez, A. April, and M. Piche, Opt. Express 20, 14891 (2012). [CrossRef]
  19. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008). [CrossRef]
  20. K. Huang, P. Shi, X. Kang, X. Zhang, and Y. Li, Opt. Lett. 35, 965 (2010). [CrossRef]
  21. J. Wang, W. Chen, and Q. Zhan, Opt. Express 18, 21965 (2010). [CrossRef]
  22. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  23. Y. Jiang, X. Li, and M. Gu, Opt. Lett. 38, 2957 (2013). [CrossRef]
  24. D. Ganic, X. Gan, and M. Gu, Opt. Express 11, 2747 (2003). [CrossRef]
  25. K. Kitamura, K. Sakai, N. Takayama, M. Nishimoto, and S. Noda, Opt. Lett. 37, 2421 (2012). [CrossRef]
  26. X. Li, T. H. Lan, C. H. Tien, and M. Gu, Nat. Commun. 3, 998 (2012). [CrossRef]
  27. B. Richards and E. Wolf, Proc. Roy. Soc. London Ser. A 253, 358 (1959).
  28. G. M. Lerman and U. Levy, Opt. Express 16, 4567 (2008). [CrossRef]
  29. X. Hao, C. Kuang, T. Wang, and X. Liu, Opt. Lett. 35, 3928 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited