OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 17 — Sep. 1, 2014
  • pp: 5070–5073

Determining the topological charge of stochastic electromagnetic vortex beams with the degree of cross-polarization

Meilan Luo and Daomu Zhao  »View Author Affiliations

Optics Letters, Vol. 39, Issue 17, pp. 5070-5073 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By analysis of the degree of cross-polarization of a stochastic electromagnetic vortex beam, we find that the number of bright ring dislocations is equal to the topological charge of the vortex beam. Based on this property, we suggest a method to access the measurement of the orbital angular momentum of vector vortex beams, which holds true for cases of high coherence or low coherence.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Physical Optics

Original Manuscript: July 1, 2014
Manuscript Accepted: July 22, 2014
Published: August 20, 2014

Meilan Luo and Daomu Zhao, "Determining the topological charge of stochastic electromagnetic vortex beams with the degree of cross-polarization," Opt. Lett. 39, 5070-5073 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992). [CrossRef]
  2. H. I. Sztul and R. R. Alfano, Opt. Lett. 31, 999 (2006). [CrossRef]
  3. I. Moreno, J. A. Davis, B. M. L. Pascoguin, M. J. Mitry, and D. M. Cottrell, Opt. Lett. 34, 2927 (2009). [CrossRef]
  4. C. S. Guo, L. L. Lu, and H. T. Wang, Opt. Lett. 34, 3686 (2009). [CrossRef]
  5. L. E. E. de Araujo and M. E. Anderson, Opt. Lett. 36, 787 (2011). [CrossRef]
  6. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander, Phys. Rev. Lett. 92, 143905 (2004). [CrossRef]
  7. Y. J. Yang, M. Mazilu, and K. Dholakia, Opt. Lett. 37, 4949 (2012).
  8. C. Zhao, F. Wang, Y. Dong, Y. Han, and Y. Cai, Appl. Phys. Lett. 101, 261104 (2012). [CrossRef]
  9. P. Ding and J. Pu, Opt. Express 22, 1350 (2014). [CrossRef]
  10. H. Garcia-Gracia, B. Perez-Garcia, D. Lopez-Mago, R. I. Hernandez-Aranda, and J. C. Gutierrez-Vega, J. Opt. 16, 045702 (2014). [CrossRef]
  11. B. Perez-Garcia, D. Lopez-Mago, H. Garcia-Gracia, J. A. Garza-Alanis, R. I. Hernandez-Aranda, and J. C. Gutierrez-Vega, Opt. Lett. 39, 1929 (2014). [CrossRef]
  12. T. Shirai and E. Wolf, Opt. Commun. 272, 289 (2007). [CrossRef]
  13. S. N. Volkov, D. F. V. James, T. Shirai, and E. Wolf, J. Opt. A 10, 055001 (2008). [CrossRef]
  14. J. Pu and O. Korotkova, Opt. Commun. 282, 1691 (2009). [CrossRef]
  15. S. Sahin, O. Korotkova, G. Zhang, and J. Pu, J. Opt. A Pure Appl. Opt. 11, 085703 (2009). [CrossRef]
  16. P. Ding and H. Ren, Opt. Eng. 51, 018002 (2012). [CrossRef]
  17. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  18. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  19. M. Luo, Q. Chen, L. Hua, and D. Zhao, Phys. Lett. A 378, 308 (2014). [CrossRef]
  20. H. Roychowdhury and E. Wolf, Opt. Commun. 226, 57 (2003). [CrossRef]
  21. G. Basso, L. Oliveira, and I. Vidal, Opt. Lett. 39, 1220 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited