OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 17 — Sep. 1, 2014
  • pp: 5102–5105

Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s

Christian Hagemann, Christian Grebing, Christian Lisdat, Stephan Falke, Thomas Legero, Uwe Sterr, Fritz Riehle, Michael J. Martin, and Jun Ye  »View Author Affiliations

Optics Letters, Vol. 39, Issue 17, pp. 5102-5105 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cryogenic single-crystal optical cavities have the potential to provide high dimensional stability. We have investigated the long-term performance of an ultrastable laser system that is stabilized to a single-crystal silicon cavity operated at 124 K. Utilizing a frequency comb, the laser is compared to a hydrogen maser that is referenced to a primary caesium fountain standard and to the Sr87 optical lattice clock at Physikalisch-Technische Bundesanstalt (PTB). With fractional frequency instabilities of σy(τ)2×1016 for averaging times of τ=60s to 1000 s and σy(1d)2×1015 the stability of this laser, without any aid from an atomic reference, surpasses the best known microwave standards for short averaging times and is competitive with the best known hydrogen masers for longer times of 1 day. The comparison of modeled thermal response of the cavity with measured data indicates an average fractional frequency drift below 5×1019/s, which we do not expect to be a fundamental limit.

© 2014 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.4780) Lasers and laser optics : Optical resonators
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 6, 2014
Manuscript Accepted: June 18, 2014
Published: August 22, 2014

Christian Hagemann, Christian Grebing, Christian Lisdat, Stephan Falke, Thomas Legero, Uwe Sterr, Fritz Riehle, Michael J. Martin, and Jun Ye, "Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s," Opt. Lett. 39, 5102-5105 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, Phys. Rev. Lett. 82, 4619 (1999). [CrossRef]
  2. T. Nicholson, M. Martin, J. Williams, B. Bloom, M. Bishof, M. Swallows, S. Campbell, and J. Ye, Phys. Rev. Lett. 109, 230801 (2012). [CrossRef]
  3. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, Science 341, 1215 (2013). [CrossRef]
  4. C. Eisele, A. Y. Nevsky, and S. Schiller, Phys. Rev. Lett. 103, 090401 (2009). [CrossRef]
  5. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, Science 329, 1630 (2010). [CrossRef]
  6. S. Grop, W. Schäfer, P. Y. Bourgeois, N. Bazin, Y. Kersalé, M. Oxborrow, E. Rubiola, and V. Giordano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1694 (2011). [CrossRef]
  7. N. R. Nand, J. G. Hartnett, E. N. Ivanov, and G. Santarelli, IEEE Trans. Microwave Theory Tech. 59, 2978 (2011). [CrossRef]
  8. S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, Publ. Astron. Soc. Pac. 123, 582 (2011). [CrossRef]
  9. M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, Science 341, 632 (2013). [CrossRef]
  10. P. Dubé, A. Madej, J. Bernard, L. Marmet, and A. Shiner, Appl. Phys. B 95, 43 (2009). [CrossRef]
  11. R. Storz, C. Braxmaier, K. Jäck, O. Pradl, and S. Schiller, Opt. Lett. 23, 1031 (1998). [CrossRef]
  12. S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 78, 4741 (1997). [CrossRef]
  13. D. W. Allan and J. Barnes, in Proceedings of the 35th Annual Frequency Control Symposium(Electronic Industries Association, 1981), pp. 470–475.
  14. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, Nat. Photonics 6, 687 (2012). [CrossRef]
  15. S. Falke, H. Schnatz, J. S. R. Vellore Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, Metrologia 48, 399 (2011). [CrossRef]
  16. S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, C. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and C. Lisdat, New J. Phys. 16, 073023 (2014). [CrossRef]
  17. V. Gerginov, N. Nemitz, S. Weyers, R. Schröder, R. D. Griebsch, and R. Wynands, Metrologia 47, 65 (2010). [CrossRef]
  18. C. Hagemann, C. Grebing, T. Kessler, S. Falke, N. Lemke, C. Lisdat, H. Schnatz, F. Riehle, and U. Sterr, IEEE Trans. Instrum. Meas. 62, 1556 (2013). [CrossRef]
  19. T. Kessler, T. Legero, and U. Sterr, J. Opt. Soc. Am. B 29, 178 (2012). [CrossRef]
  20. J. G. Hartnett, N. R. Nand, and C. Lu, Appl. Phys. Lett. 100, 183501 (2012). [CrossRef]
  21. W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, Opt. Lett. 39, 1980 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited