OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 17 — Sep. 1, 2014
  • pp: 5114–5117

Catoptric electrodes: transparent metal electrodes using shaped surfaces

Pieter G. Kik  »View Author Affiliations

Optics Letters, Vol. 39, Issue 17, pp. 5114-5117 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (508 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

© 2014 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(240.6680) Optics at surfaces : Surface plasmons
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Optics at Surfaces

Original Manuscript: April 1, 2014
Revised Manuscript: July 18, 2014
Manuscript Accepted: July 20, 2014
Published: August 22, 2014

Pieter G. Kik, "Catoptric electrodes: transparent metal electrodes using shaped surfaces," Opt. Lett. 39, 5114-5117 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007). [CrossRef]
  2. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001). [CrossRef]
  3. S. J. Lee, Z. Y. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, Nat. Commun. 2, 286 (2011).
  4. A. Alu, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, Phys. Rev. Lett. 106, 123902 (2011). [CrossRef]
  5. C. Argyropoulos, G. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alu, Phys. Rev. B 85, 024304 (2012).
  6. K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alu, J. Appl. Phys. 112, 094317 (2012).
  7. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  8. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited