OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 17 — Sep. 1, 2014
  • pp: 5118–5121

Brillouin slow light: substantial optical delay in the second-order Brillouin gain spectrum

Gabriel K. W. Gan, Y. G. Shee, K. S. Yeo, G. Amouzad Madhiraji, F. R. Mahamd Adikan, and M. A. Mahdi  »View Author Affiliations

Optics Letters, Vol. 39, Issue 17, pp. 5118-5121 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (505 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate optical delay in the second-order Brillouin gain spectrum by incorporating a double Brillouin-frequency shifter into the system. By coinciding the seed signal with the second-order Brillouin gain spectrum, it was found that the seed signal experienced significantly larger delay as compared to the Brillouin slow light generated from the first-order Brillouin spectrum. At a Brillouin gain of 17 dB, the delay was found to be at maximum of 60 ns. This widens the window of promising opportunities into the deployment of all optical tunable delay into the existing optical signal processing.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin
(350.5500) Other areas of optics : Propagation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 23, 2014
Revised Manuscript: July 16, 2014
Manuscript Accepted: July 23, 2014
Published: August 22, 2014

Gabriel K. W. Gan, Y. G. Shee, K. S. Yeo, G. Amouzad Madhiraji, F. R. Mahamd Adikan, and M. A. Mahdi, "Brillouin slow light: substantial optical delay in the second-order Brillouin gain spectrum," Opt. Lett. 39, 5118-5121 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Jager and A. Stohr, in Proceedings of the German Microwave Conference, W. Menzel, ed. (Ulm, Germany, 2005), p. 136.
  2. L. Thevenaz, Nat. Photonics 2, 474 (2008). [CrossRef]
  3. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005). [CrossRef]
  4. J. B. Khurgin, J. Opt. Soc. Am. B 22, 1062 (2005). [CrossRef]
  5. L. Ren and Y. Tomita, Proc. SPIE 7226, 722605 (2009). [CrossRef]
  6. J. B. Khurgin, Adv. Opt. Photon. 2, 287 (2010). [CrossRef]
  7. D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, Photonics Spectra 40, 44 (2006).
  8. K. Y. Song, M. G. Herraez, and L. Thevenaz, Opt. Express 13, 82 (2005). [CrossRef]
  9. N. Zhu, Y. Wang, Q. Ren, L. Zhu, M. Yuan, and G. An, Opt. Laser Technol. 57, 154 (2014). [CrossRef]
  10. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005). [CrossRef]
  11. Z. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, J. Lightwave Technol. 25, 201 (2007). [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  13. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  14. Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, Appl. Opt. 49, 3956 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited