OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 17 — Sep. 1, 2014
  • pp: 5177–5179

Spectral imaging using single-axis spectrally dispersed illumination

Yair Bar-Ilan and Dvir Yelin  »View Author Affiliations

Optics Letters, Vol. 39, Issue 17, pp. 5177-5179 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectral imaging is a powerful tool for a wide variety of applications; however, low imaging rates and signal-to-noise ratios (SNRs) often limit its use for many biomedical applications. Here, we present a technique for spectral imaging using a unique two-dimensional illumination pattern having spectral dispersion in one axis. The method, which is called spectrally dispersed illumination spectral imaging (SDISI), allows high-speed, high-resolution acquisition of spectral data from specimens that often cannot tolerate high illumination intensities or require fast imaging for avoiding motion artifacts. The technique is demonstrated by capturing spectral data cubes of the finger of a human volunteer using short exposure durations and a high (33.5 dB) SNR.

© 2014 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 9, 2014
Manuscript Accepted: July 15, 2014
Published: August 27, 2014

Virtual Issues
Vol. 9, Iss. 11 Virtual Journal for Biomedical Optics

Yair Bar-Ilan and Dvir Yelin, "Spectral imaging using single-axis spectrally dispersed illumination," Opt. Lett. 39, 5177-5179 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Farkas and D. Becker, Pigment Cell Res. 14, 2 (2001). [CrossRef]
  2. C. L. Wyatt, Appl. Opt. 14, 3086 (1975). [CrossRef]
  3. R. D. Shonat, E. S. Wachman, W.-H. Niu, A. P. Koretsky, and D. L. Farkas, Biophys. J. 73, 1223 (1997). [CrossRef]
  4. P. J. Miller, Metrologia 28, 145 (1991). [CrossRef]
  5. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, Nat. Biotechnol. 22, 969 (2004). [CrossRef]
  6. M. B. Sinclair, J. A. Timlin, D. M. Haaland, and M. Werner-Washburne, Appl. Opt. 43, 2079 (2004). [CrossRef]
  7. Y. Garini, M. Macville, S. du Manoir, R. A. Buckwald, M. Lavi, N. Katzir, D. Wine, I. Bar-Am, E. Scherock, D. Habib, and T. Ried, Bioimaging 4, 65 (1996). [CrossRef]
  8. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, J. Microsc. 182, 133 (1996). [CrossRef]
  9. A. Abramov, L. Minai, and D. Yelin, Opt. Express 19, 6913 (2011). [CrossRef]
  10. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, Nature 443, 765 (2006). [CrossRef]
  11. J. M. Dudley, G. R. Genty, and S. P. Coen, Rev. Mod. Phys. 78, 1135 (2006). [CrossRef]
  12. S. Horne, D. Smith, M. Besen, M. Parlow, D. Stolyarov, H. Zhu, and W. Holber, Proc. SPIE 7680, 76800L (2010). [CrossRef]
  13. G. Engel, H. Genish, M. Rosenbluh, and D. Yelin, Biomed. Opt. Express 3, 1855 (2012). [CrossRef]
  14. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, Clin. Chem. 37, 1633 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited