OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 17 — Sep. 1, 2014
  • pp: 5204–5207

Observation of the Uller–Zenneck wave

Muhammad Faryad and Akhlesh Lakhtakia  »View Author Affiliations


Optics Letters, Vol. 39, Issue 17, pp. 5204-5207 (2014)
http://dx.doi.org/10.1364/OL.39.005204


View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Uller–Zenneck wave has been theoretically predicted to exist at the planar interface of two homogeneous dielectric materials of which only one must be dissipative. Experimental confirmation of this century-old prediction was obtained experimentally by exciting the Uller–Zenneck wave as a Floquet harmonic of nonzero order at the periodically corrugated interface of air and crystalline silicon in the 400-to-900-nm spectral regime. Application for intrachip optical interconnects at 850 nm appears promising.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.0240) Optics at surfaces : Optics at surfaces
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 1, 2014
Revised Manuscript: July 28, 2014
Manuscript Accepted: July 29, 2014
Published: August 28, 2014

Citation
Muhammad Faryad and Akhlesh Lakhtakia, "Observation of the Uller–Zenneck wave," Opt. Lett. 39, 5204-5207 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-17-5204


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Uller, Beiträge zur Theorie der Elektromagnetischen Strahlung, Ph.D. Thesis, Universität Rostock, Germany, 1903; Chap. XIV.
  2. J. Zenneck, Ann. Phys. (Leipzig) 23, 846 (1907).
  3. J. A. Polo, T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective; App. C (Elsevier, 2013).
  4. H. J. Simon, D. E. Mitchell, and J. G. Watson, Am. J. Phys. 43, 630 (1975). [CrossRef]
  5. U. Fano, J. Opt. Soc. Am. 31, 213 (1941). [CrossRef]
  6. W. H. Wise, Bell Syst. Tech. J. 16, 35 (1937). [CrossRef]
  7. J. R. Wait, IEEE Antennas Propag. Mag. 40(5), 7 (1998).
  8. A. V. Kukushkin, Phys. Usp. 52, 755 (2009). [CrossRef]
  9. M. Faryad and A. Lakhtakia, J. Opt. Soc. Am. B 31, 1706 (2014). [CrossRef]
  10. J. M. Lerner, Proc. SPIE 2532, 2 (1995). [CrossRef]
  11. L. Li, J. Opt. Soc. Am. A 10, 2581 (1993). [CrossRef]
  12. P. Lalanne and G. M. Morris, J. Opt. Soc. Am. A 13, 779 (1996). [CrossRef]
  13. http://refractiveindex.info/legacy/?group=CRYSTALS&material=Si&option=Palik&wavelength=6.18 (Accessed on May1, 2014).
  14. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Opt. Lett. 18, 528 (1993). [CrossRef]
  15. N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, 1972).
  16. K. Iga, Jpn. J. Appl. Phys. 47, 1 (2008). [CrossRef]
  17. T. Kaneko, in Handbook of Optical Interconnects, S. Kawai, ed. (CRC Press, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited