OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 18 — Sep. 15, 2014
  • pp: 5271–5273

Broad-bandwidth, high-efficiency multiwavelength conversion in a high-Q photonic crystal resonator

Jun-Fang Wu and Chao Li  »View Author Affiliations

Optics Letters, Vol. 39, Issue 18, pp. 5271-5273 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analytically and numerically demonstrate that multiwavelength conversion can be realized in a high-Q photonic crystal nanocavity. With the help of a dynamic-phase-shift effect induced by bandgap-multireflection, the wavelength conversion efficiency of nearly 100% is achieved for a broad conversion range over several hundreds of nanometers, which is much larger than the reported results obtained by other linear methods (e.g., adiabatic wavelength conversion). This approach may open a way for the study of on-chip ultralow-power optical communications and quantum information processing.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Optical Devices

Original Manuscript: May 13, 2014
Revised Manuscript: July 23, 2014
Manuscript Accepted: July 31, 2014
Published: September 3, 2014

Jun-Fang Wu and Chao Li, "Broad-bandwidth, high-efficiency multiwavelength conversion in a high-Q photonic crystal resonator," Opt. Lett. 39, 5271-5273 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljačic, Opt. Express 15, 16161 (2007). [CrossRef]
  2. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, Opt. Express 14, 1182 (2006). [CrossRef]
  3. E. E. Hach, A. W. Elshaari, and S. F. Preble, Phys. Rev. A 82, 063839 (2010). [CrossRef]
  4. S. Vidal, J. Luce, and D. Penninckx, Opt. Lett. 36, 3494 (2011). [CrossRef]
  5. B. Beaudou, F. Couny, Y. Y. Wang, P. S. Light, N. V. Wheeler, F. Gérôme, and F. Benabid, Opt. Express 18, 12381 (2010). [CrossRef]
  6. M. F. Yanik and S. Fan, Phys. Rev. Lett. 93, 173903 (2004). [CrossRef]
  7. M. Notomi and S. Mitsugi, Phys. Rev. A 73, 051803(R) (2006). [CrossRef]
  8. S. Preble, Q. Xu, and M. Lipson, Nat. Photonics 1, 293 (2007). [CrossRef]
  9. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, Phys. Rev. Lett. 102, 043907 (2009). [CrossRef]
  10. T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, Phys. Rev. A 81, 043837 (2010). [CrossRef]
  11. J. Upham, Y. Tanaka, T. Asano, and S. Noda, Appl. Phys. Express 3, 062001 (2010). [CrossRef]
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2007), Chap. 7.
  13. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  14. H. Richard, Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 2nd. Ed. (Prentice-Hall, 1987), Chap. 7.
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2000).
  16. C. Li, J. F. Wu, and W. C. Xu, Appl. Opt. 49, 2957 (2010). [CrossRef]
  17. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, Opt. Express 18, 8367 (2010). [CrossRef]
  18. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 64, 075313 (2001). [CrossRef]
  19. Y. Tanaka, T. Asano, and S. Noda, J. Lightwave Technol. 26, 1532 (2008). [CrossRef]
  20. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, Nat. Photonics 5, 91 (2011). [CrossRef]
  21. E. Weidner, S. Combri, N. Tran, A. De Rossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, Appl. Phys. Lett. 89, 221104 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited