OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 2 — Jan. 15, 2014
  • pp: 216–219

Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide

Guangtao Cao, Hongjian Li, Shiping Zhan, Zhihui He, Zhibo Guo, Xiuke Xu, and Hui Yang  »View Author Affiliations


Optics Letters, Vol. 39, Issue 2, pp. 216-219 (2014)
http://dx.doi.org/10.1364/OL.39.000216


View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a classic analog of electromagnetically induced transparency (EIT) in a metal–dielectric–metal (MDM) bus waveguide coupled to two stub resonators. A uniform theoretical model, for both direct and indirect couplings between the two stubs, is established to study spectral features in the plasmonic stub waveguide, and the theoretical results agree well with the finite difference time domain simulations. Adjusting phase difference and coupling strength of the interaction, one can realize the EIT-like phenomena and achieve the required slow light effect. The theoretical results may provide a guideline for the control of light in highly integrated optical circuits.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

History
Original Manuscript: May 16, 2013
Revised Manuscript: October 31, 2013
Manuscript Accepted: December 1, 2013
Published: January 6, 2014

Citation
Guangtao Cao, Hongjian Li, Shiping Zhan, Zhihui He, Zhibo Guo, Xiuke Xu, and Hui Yang, "Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide," Opt. Lett. 39, 216-219 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-2-216


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Boller, A. Imamolu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991). [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005). [CrossRef]
  3. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006). [CrossRef]
  4. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, Phys. Rev. Lett. 102, 173902 (2009). [CrossRef]
  5. K. Totsuka, N. Kobayashi, and M. Tomita, Phys. Rev. Lett. 98, 213904 (2007). [CrossRef]
  6. Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, Phys. Rev. A 75, 063833 (2007). [CrossRef]
  7. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Phys. Today 61(5), 44 (2008). [CrossRef]
  8. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010). [CrossRef]
  9. Y. Huang, C. Min, and G. Veronis, Appl. Phys. Lett. 99, 143117 (2011). [CrossRef]
  10. L. Yang, C. G. Min, and G. Veronis, Opt. Lett. 35, 4184 (2010). [CrossRef]
  11. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, J. Opt. Soc. Am. B 28, 28 (2011). [CrossRef]
  12. Z. H. Han and S. I. Bozhevolnyi, Opt. Express 19, 3251 (2011). [CrossRef]
  13. G. X. Wang, H. Lu, and X. M. Liu, Opt. Express 20, 20902 (2012). [CrossRef]
  14. H. Lu, X. M. Liu, and D. Mao, Phys. Rev. A 85, 053803 (2012). [CrossRef]
  15. H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, Opt. Lett. 36, 3233 (2011). [CrossRef]
  16. X. J. Piao, S. Yu, S. Koo, K. H. Lee, and N. Park, Opt. Express 19, 10907 (2011). [CrossRef]
  17. Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, Opt. Express 20, 24348 (2012). [CrossRef]
  18. R. D. Kekatpure, Phys. Rev. Lett. 104, 243902 (2010). [CrossRef]
  19. H. A. Haus and W. P. Huang, Proc. IEEE 79, 1505 (1991). [CrossRef]
  20. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Chap. 7.
  21. G. T. Cao, H. J. Li, S. P. Zhan, H. Q. Xu, Z. M. Liu, Z. H. He, and Y. Wang, Opt. Express 21, 9198 (2013). [CrossRef]
  22. L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cai, and Y. M. Zhu, Opt. Lett. 38, 1379 (2013). [CrossRef]
  23. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  24. E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).
  25. E. N. Economou, Phys. Rev. 182, 539 (1969). [CrossRef]
  26. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  27. A. Ishikawa, R. F. Oulton, T. Zentgra, and X. Zhang, Phys. Rev. B 85, 155108 (2012). [CrossRef]
  28. G. X. Wang, H. Lu, and X. M. Liu, Opt. Lett. 38, 558 (2013). [CrossRef]
  29. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, Phys. Rev. B 80, 195415 (2009). [CrossRef]
  30. K. Ooi, T. Okada, and K. Tanaka, Phys. Rev. B 84, 115405 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited