OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 2 — Jan. 15, 2014
  • pp: 375–378

Dark current suppression of MgZnO metal-semiconductor-metal solar-blind ultraviolet photodetector by asymmetric electrode structures

Ping Wang, Qinghong Zheng, Qing Tang, Yintang Yang, Lixin Guo, Feng Huang, Zhenjie Song, and Zhiyong Zhang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 2, pp. 375-378 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of asymmetric Schottky barrier and electrode area in an MgZnO metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetector has been investigated by a physical-based numerical model in which the electron mobility is obtained by an ensemble Monte Carlo simulation combined with first principle calculations using the density functional theory. Compared with the experimental data of symmetric and asymmetric MSM structures based on ZnO substrate, the validity of this model is verified. The asymmetric Schottky barrier and electrode area devices exhibit reductions of 20 times and 1.3 times on dark current, respectively, without apparent photocurrent scarification. The plots of photo-to-dark current ratio (PDR) indicate that the asymmetric MgZnO MSM structure has better dark current characteristic than that of the symmetric one.

© 2014 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.0250) Optical devices : Optoelectronics

ToC Category:

Original Manuscript: September 18, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 12, 2013
Published: January 15, 2014

Ping Wang, Qinghong Zheng, Qing Tang, Yintang Yang, Lixin Guo, Feng Huang, Zhenjie Song, and Zhiyong Zhang, "Dark current suppression of MgZnO metal-semiconductor-metal solar-blind ultraviolet photodetector by asymmetric electrode structures," Opt. Lett. 39, 375-378 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Han, Z. Zhang, J. Zhang, L. Wang, J. Zheng, H. Zhao, Y. Zhang, M. Jiang, S. Wang, and D. Zhao, Appl. Phys. Lett. 99, 242105 (2011). [CrossRef]
  2. F. Xie, H. Lu, D. Chen, X. Ji, F. Yan, R. Zhang, Y. Zheng, L. Li, and J. Zhou, IEEE Sens. J. 12, 2086 (2012). [CrossRef]
  3. Q. Zheng, F. Huang, K. Ding, J. Huang, D. Chen, Z. Zhan, and Z. Lin, Appl. Phys. Lett. 98, 221112 (2011). [CrossRef]
  4. Q. Zheng, F. Huang, J. Huang, Q. Hu, D. Chen, and K. Ding, IEEE Electron Device Lett. 33, 1033 (2012). [CrossRef]
  5. Z. Hu, Z. Li, L. Zhu, F. Liu, Y. Lv, X. Zhang, and Y. Wang, Opt. Lett. 37, 3072 (2012). [CrossRef]
  6. F. Auret, S. Goodman, M. Hayes, M. Legodi, H. Van Laarhoven, and D. C. Look, Appl. Phys. Lett. 79, 3074 (2001). [CrossRef]
  7. S. Choopun, R. Vispute, W. Yang, R. Sharma, T. Venkatesan, and H. Shen, Appl. Phys. Lett 80, 1529 (2002). [CrossRef]
  8. P. Wang, Q. Zhen, Q. Tang, Y. Yang, L. Guo, K. Ding, and F. Huang, Opt. Express 21, 18387 (2013). [CrossRef]
  9. D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, Opt. Express 14, 2047 (2006). [CrossRef]
  10. A. K. Okyay, A. M. Nayfeh, K. C. Saraswat, T. Yonehara, A. Marshall, and P. C. McIntyre, Opt. Lett. 31, 2565 (2006). [CrossRef]
  11. A. Müller, G. Konstantinidis, M. Dragoman, D. Neculoiu, A. Kostopoulos, M. Androulidaki, M. Kayambaki, and D. Vasilache, Appl. Opt. 47, 1453 (2008). [CrossRef]
  12. K. Liu, D. Shen, C. Shan, J. Zhang, B. Yao, D. Zhao, Y. Lu, and X. Fan, Appl. Phys. Lett. 91, 201106 (2007). [CrossRef]
  13. H. Liang, Z. Mei, Q. Zhang, L. Gu, S. Liang, Y. Hou, D. Ye, C. Gu, R. Yu, and X. Du, Appl. Phys. Lett. 98, 221902 (2011). [CrossRef]
  14. G. Li, J. Zhang, Y. Liu, and K. Zhang, Opt. Eng. 50, 113801 (2011). [CrossRef]
  15. J. B. D. Soole and H. Schumacher, IEEE J. Quantum Electron. 27, 737 (1991). [CrossRef]
  16. K.-W. Ang, M.-B. Yu, S.-Y. Zhu, K.-T. Chua, G.-Q. Lo, and D.-L. Kwong, IEEE Electron Device Lett. 29, 10339 (2008).
  17. C. O. Chui, A. K. Okyay, and K. C. Saraswat, IEEE Photon. Technol. Lett. 15, 1585 (2003). [CrossRef]
  18. A. K. Okyay, C. O. Chui, and K. C. Saraswat, Appl. Phys. Lett. 88, 063506 (2006). [CrossRef]
  19. J.-H. Park and H.-Y. Yu, Opt. Lett. 36, 1182 (2011). [CrossRef]
  20. D. Li, X. Sun, H. Song, Z. Li, H. Jiang, Y. Chen, G. Miao, and B. Shen, Appl. Phys. Lett. 99, 261102 (2011). [CrossRef]
  21. J. Hwang, W. Chang, Y. Chen, C. Kung, C. Hu, and P. Chen, Thin Solid Films 515, 3837 (2007). [CrossRef]
  22. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984).
  23. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). [CrossRef]
  24. A. F. Salem, A. W. Smith, and K. F. Brennan, IEEE Trans. Electron Devices 41, 1112 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited