OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 3 — Feb. 1, 2014
  • pp: 458–461

Effective thermal resistance of a photonic crystal microcavity

L.-D. Haret, A. Ghrib, X. Checoury, N. Cazier, Z. Han, M. El Kurdi, S. Sauvage, and P. Boucaud  »View Author Affiliations

Optics Letters, Vol. 39, Issue 3, pp. 458-461 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple method to accurately measure the effective thermal resistance of a photonic crystal microcavity. The cavity is embedded between two Schottky contacts forming a metal-semiconductor-metal device. The photocarriers circulating in the device provide a local temperature rise that can be dominated by Joule effect under certain conditions. We show that the effective thermal resistance (Rth) can be experimentally deduced from the spectral shift of the cavity resonance wavelength measured at different applied bias. We deduce a value of Rth=1.6×104KW1 for a microcavity on silicon-on-insulator, which is in good agreement with 3D thermal modeling by finite elements.

© 2014 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(350.5340) Other areas of optics : Photothermal effects
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: October 22, 2013
Revised Manuscript: December 5, 2013
Manuscript Accepted: December 13, 2013
Published: January 20, 2014

L.-D. Haret, A. Ghrib, X. Checoury, N. Cazier, Z. Han, M. El Kurdi, S. Sauvage, and P. Boucaud, "Effective thermal resistance of a photonic crystal microcavity," Opt. Lett. 39, 458-461 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, Opt. Lett. 30, 2575 (2005). [CrossRef]
  2. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nat. Photonics 6, 248 (2012). [CrossRef]
  3. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009). [CrossRef]
  4. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003). [CrossRef]
  5. Z. Han, X. Checoury, D. Neel, S. David, M. El Kurdi, and P. Boucaud, Opt. Commun. 283, 4387 (2010). [CrossRef]
  6. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004). [CrossRef]
  7. X. Checoury, Z. Han, and P. Boucaud, Phys. Rev. B 82, 041308 (2010). [CrossRef]
  8. N. Cazier, X. Checoury, L.-D. Haret, and P. Boucaud, Opt. Express 21, 13626 (2013). [CrossRef]
  9. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, Opt. Express 17, 21108 (2009). [CrossRef]
  10. P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005). [CrossRef]
  11. T. Uesugi, B. S. Song, T. Asano, and S. Noda, Opt. Express 14, 377 (2006). [CrossRef]
  12. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  13. L.-D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. de Rossi, Opt. Express 18, 23965 (2010). [CrossRef]
  14. L.-D. Haret, X. Checoury, F. Bayle, N. Cazier, P. Boucaud, S. Combrié, and A. de Rossi, Opt. Express 21, 10324 (2013). [CrossRef]
  15. G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999). [CrossRef]
  16. T. Asano, W. Kunishi, M. Nakamura, B. Song, and S. Noda, Electron. Lett. 41, 37 (2005). [CrossRef]
  17. M. Tinker and J.-B. Lee, Opt. Express 13, 7174 (2005). [CrossRef]
  18. M. Chahal, G. K. Celler, Y. Jaluria, and W. Jiang, Opt. Express 20, 4225 (2012). [CrossRef]
  19. W. Song, M. Chahal, G. K. Celler, Y. Jaluria, G. T. Reed, and W. Jiang, Opt. Express 21, 4235 (2013). [CrossRef]
  20. R. G. Morris and J. G. Hust, Phys. Rev. 124, 1426 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited