OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 3 — Feb. 1, 2014
  • pp: 610–613

Analysis of contrast and motion signals generated by human blood constituents in capillary flow

Phillip Bedggood and Andrew Metha  »View Author Affiliations


Optics Letters, Vol. 39, Issue 3, pp. 610-613 (2014)
http://dx.doi.org/10.1364/OL.39.000610


View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The flow of individual corpuscles through retinal capillaries may now be observed noninvasively by using adaptive optics (AO). To explore their imaging properties, we imaged retinal capillary flow in two healthy subjects at 593 nm with a flood-based AO ophthalmoscope, at a variety of retinal locations and levels of defocus. The image intensity of red cells and plasma depends upon capillary depth relative to focus: red cells appear brighter than background, and plasma darker, for capillaries posterior to focus. The reverse is true for capillaries anterior to focus. Contrast reversals were obtained over 0.05 D (14μm), which are well within the typical undulations in depth of retinal capillaries. We relate these observations to phase-contrast defocusing microscopy. This defocusing effect confounds flow measurements, which rely on correlation of image intensity between successive locations along the same capillary, a requirement made further difficult by high physiological variability in flow. Peak correlation was maintained >0.25 over a distance of 22±15μm (roughly the spacing between red cells) and over a duration of 154±49ms (roughly eight times the temporal period between red cells). We provide a 2D correlogram approach that significantly improves robustness in the face of optical and physiological variability, compared to the traditional spatiotemporal plot, without requiring additional data.

© 2014 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(330.4875) Vision, color, and visual optics : Optics of physiological systems

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 1, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 23, 2013
Published: January 28, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics
March 27, 2014 Spotlight on Optics

Citation
Phillip Bedggood and Andrew Metha, "Analysis of contrast and motion signals generated by human blood constituents in capillary flow," Opt. Lett. 39, 610-613 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-3-610


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Liang and D. R. Williams, J. Opt. Soc. Am. A 14, 2873 (1997). [CrossRef]
  2. Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, Opt. Express 16, 12746 (2008). [CrossRef]
  3. Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, Invest. Ophthalmol. Vis. Sci. 52, 4151 (2011). [CrossRef]
  4. J. A. Martin and A. Roorda, Ophthalmology 112, 2219 (2005). [CrossRef]
  5. J. A. Martin and A. Roorda, Exp. Eye Res. 88, 356 (2009). [CrossRef]
  6. J. Tam, P. Tiruveedhula, and A. Roorda, Biomed. Opt. Express 2, 781 (2011). [CrossRef]
  7. A. Uji, M. Hangai, S. Ooto, K. Takayama, N. Arakawa, H. Imamura, K. Nozato, and N. Yoshimura, Invest. Ophthalmol. Vis. Sci. 53, 171 (2012). [CrossRef]
  8. P. Bedggood and A. Metha, Biomed. Opt. Express 3, 3264 (2012). [CrossRef]
  9. B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schonbein, Am. J. Physiol. 273, H2884 (1997).
  10. P. Gasser and O. Meienberg, Eur. Neurol. 31, 168 (1991). [CrossRef]
  11. H. H. Lipowsky, N. U. Sheikh, and D. M. Katz, J. Clin. Invest. 80, 117 (1987). [CrossRef]
  12. J. Tam, J. A. Martin, and A. Roorda, Investig. Ophthalmol. Vis. Sci. 51, 1691 (2010). [CrossRef]
  13. U. Agero, C. H. Monken, C. Ropert, R. T. Gazzinelli, and O. N. Mesquita, Phys. Rev. E 67, 051904 (2003). [CrossRef]
  14. L. G. Mesquita, U. Agero, and O. N. Mesquita, Appl. Phys. Lett. 88, 133901 (2006). [CrossRef]
  15. A. Roggan, M. Friebel, K. Do Rschel, A. Hahn, and G. Mu Ller, J. Biomed. Opt. 4, 36 (1999). [CrossRef]
  16. Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, Phys. Med. Biol. 51, N371 (2006). [CrossRef]
  17. A. Ajo, Acta Physiologica Scandinavica 13, 130 (1947). [CrossRef]
  18. P. Bedggood and A. Metha, “Oximetry imaging of the retinal microvasculature using adaptive optics,” presented at the Association for Research in Vision and Ophthalmology Annual Meeting, Ft. Lauderdale, Fla., May6–10, 2012.
  19. E. Chaigneau, M. Oheim, E. Audinat, and S. Charpak, Proc. Natl. Acad. Sci. USA 100, 13081 (2003). [CrossRef]
  20. B. Stefanovic, E. Hutchinson, V. Yakovleva, V. Schram, J. T. Russell, L. Belluscio, A. P. Koretsky, and A. C. Silva, J. Cereb. Blood Flow Metab. 28, 961 (2008). [CrossRef]
  21. Z. Zhong, G. Huang, T. Y. Chui, B. L. Petrig, and S. A. Burns, J. Vis. 12(6), 3 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Supplementary Material


» Media 1: AVI (2105 KB)     
» Media 2: AVI (2466 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited