OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 3 — Feb. 1, 2014
  • pp: 719–722

Long-distance channeling of cold atoms exiting a 2D magneto-optical trap by a Laguerre–Gaussian laser beam

Vincent Carrat, Citlali Cabrera-Gutiérrez, Marion Jacquey, José W. Tabosa, Bruno Viaris de Lesegno, and Laurence Pruvost  »View Author Affiliations


Optics Letters, Vol. 39, Issue 3, pp. 719-722 (2014)
http://dx.doi.org/10.1364/OL.39.000719


View Full Text Article

Enhanced HTML    Acrobat PDF (525 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a blue-detuned laser, shaped into a nearly Laguerre–Gaussian (LG) donut mode, we channel atoms exiting a two-dimensional magneto-optical trap (2D-MOT) over a 30 cm distance. Compared to a freely propagating beam, the atomic flux (1010at/s) is conserved whereas the divergence is reduced from 40 to 3 mrad. So, 30 cm far the 2D-MOT exit, the atomic beam has a 1 mm diameter and the atomic density is increased by a factor of 200. The LG-channeled-2D-MOT has been studied versus the order of the LG mode (from 2 to 10) and versus the laser-atom frequency detuning (from 2 to 120 GHz).

© 2014 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(020.1335) Atomic and molecular physics : Atom optics
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: October 15, 2013
Revised Manuscript: December 20, 2013
Manuscript Accepted: December 20, 2013
Published: January 31, 2014

Citation
Vincent Carrat, Citlali Cabrera-Gutiérrez, Marion Jacquey, José W. Tabosa, Bruno Viaris de Lesegno, and Laurence Pruvost, "Long-distance channeling of cold atoms exiting a 2D magneto-optical trap by a Laguerre–Gaussian laser beam," Opt. Lett. 39, 719-722 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-3-719


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997). [CrossRef]
  2. K. Dieckmann, R. J. C. Spreeuw, M. Weidemuller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998). [CrossRef]
  3. J. Schoser, A. Batar, R. Low, V. Schweikhard, A. Grabowski, Y. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 23410 (2002). [CrossRef]
  4. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, J. Opt. Soc. Am. B 6, 2084 (1989). [CrossRef]
  5. S. E. Park, H. S. Lee, T. Y. Kwon, and H. Cho, Opt. Commun. 192, 57 (2001). [CrossRef]
  6. N. Friedman, A. Kaplan, and N. Davidson, Adv. At. Mol. Opt. Phys. 48, 99 (2002). [CrossRef]
  7. Y. Song, D. Milam, and W. T. Hill, Opt. Lett. 24, 1805 (1999). [CrossRef]
  8. X. Xu, K. Kim, W. Jhe, and N. Kwon, Phys. Rev. A 63, 063401 (2001). [CrossRef]
  9. F. K. Fatemi and M. Bashkansky, Opt. Express 14, 1368 (2006). [CrossRef]
  10. M. Mestre, F. Diry, B. Viaris de Lesegno, and L. Pruvost, Eur. Phys. J. D 57, 87 (2010). [CrossRef]
  11. For quantitative see also: R. Ozeri, L. Khaykovich, and N. Davidson, Phys. Rev. A 59, R1750 (1999).
  12. M. L. Terraciano, S. E. Olson, and F. K. Fatemi, Phys. Rev. A 84, 025402 (2011). [CrossRef]
  13. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996). [CrossRef]
  14. D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Arlt, and K. Dholakia, Opt. Commun. 214, 247 (2002). [CrossRef]
  15. D MOT SYRTE laboratory model. P. Cheinet, “Conception et réalisation d’un gravimètre à atomes froids,” Ph.D. thesis (2006). http://tel.archives-ouvertes.fr .
  16. N. Heckenberg, R. Mc. Duff, C. Smith, and A. White, Opt. Lett. 17, 221 (1992). [CrossRef]
  17. J. E. Curtis and D. G. Grier, Phys. Rev. Lett. 90, 133901 (2003). [CrossRef]
  18. At large distances the trap diameter differs from 2Rℓ because the non-pure LG mode becomes broader. For channeling, the trap diameter is the relevant quantity.
  19. V. Carrat, “Correction dynamique d’un SLM pour une holographie de haute fidélité. Réalisation d’un MOT-2D pour l’application de modes de Laguerre-Gauss,” Ph.D. thesis (Université de Paris XI, 2013).
  20. L. Pruvost, D. Marescaux, O. Houde, and H. T. Duong, Opt. Commun. 166, 199 (1999). [CrossRef]
  21. For the harmonic potential, ω=(2U/m)1/2/Rℓ. For the squared potential, ω=(π/2)(2U/m)1/2/Rℓ.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited