OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 4 — Feb. 15, 2014
  • pp: 1077–1080

Ultrashort silica liquid crystal photonic crystal fiber polarization rotator

Mohamed Farhat O. Hameed and Salah S. A. Obayya  »View Author Affiliations

Optics Letters, Vol. 39, Issue 4, pp. 1077-1080 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (474 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, an ultra-compact polarization rotator (PR) based on silica photonic crystal fiber with liquid crystal core is introduced and analyzed using full-vectorial finite difference approaches. The analyzed parameters of the suggested PR are the conversion length, modal hybridness, power conversion and crosstalk. In addition, the fabrication tolerance analysis of the reported design is investigated in detail. The proposed PR has an ultra-compact device length of 4.085 μm and an almost 100% polarization conversion ratio.

© 2014 Optical Society of America

OCIS Codes
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Optical Devices

Original Manuscript: November 8, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: January 13, 2014
Published: February 14, 2014

Mohamed Farhat O. Hameed and Salah S. A. Obayya, "Ultrashort silica liquid crystal photonic crystal fiber polarization rotator," Opt. Lett. 39, 1077-1080 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, and K. T. V. Grattan, Opt. Quantum Electron. 35, 297 (2003). [CrossRef]
  2. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991). [CrossRef]
  3. J. Zhang, M. Yu, G. Q. Lo, and D. L. Kwong, IEEE J. Sel. Top. Quantum Electron. 16, 53 (2010). [CrossRef]
  4. J. Zhang, S. Zhu, J. Zhang, S. Chen, G. Qiang Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011). [CrossRef]
  5. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. Alkeskjold, and A. Bjarklev, Appl. Opt. 48, 497 (2009). [CrossRef]
  6. M. F. O. Hameed and S. S. A. Obayya, J. Lightwave Technol. 29, 2725 (2011). [CrossRef]
  7. M. F. O. Hameed, A. M. Heikal, and S. S. A. Obayya, IEEE Photon. Technol. Lett. 25, 1578 (2013). [CrossRef]
  8. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, J. Lightwave Technol. 26, 1423 (2008). [CrossRef]
  9. W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993). [CrossRef]
  10. V. K. Shinoj and V. M. Murukeshan, Opt. Lett. 37, 1607 (2012). [CrossRef]
  11. M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 819 (2005). [CrossRef]
  12. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, Opt. Express 14, 914 (2006). [CrossRef]
  13. L. Wei, T. T. Alkeskjold, and A. Bjarklev, IEEE Photon. Technol. Lett. 21, 1633 (2009). [CrossRef]
  14. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, Opt. Lett. 33, 2215 (2008). [CrossRef]
  15. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, J. Appl. Phys. 97, 073501 (2005). [CrossRef]
  16. G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, and Y. Gong, Opt. Commun. 281, 1598 (2008). [CrossRef]
  17. C. M. Weinert and H. Heidrich, IEEE Photon. Technol. Lett. 5, 324 (1993). [CrossRef]
  18. F. Wang, W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011). [CrossRef]
  19. D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, IEEE Photon. J. 4, 1248 (2012). [CrossRef]
  20. T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wojcik, Meas. Sci. Technol. 18, 3061 (2007). [CrossRef]
  21. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996). [CrossRef]
  22. J. Wojcik, P. Mergo, M. Makara, K. Poturaj, K. Skorupski, and J. Klimek, Photonics Lett. Pol. 2, 10 (2010).
  23. T. R. Woliñski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domañski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wójcik, Opto-Electron. Rev. 13, 177 (2005).
  24. T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. N. Kruszelnicki, and R. Dąbrowski, Opt. Quantum Electron. 39, 1021 (2007). [CrossRef]
  25. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, Opt. Express 18, 25232 (2010). [CrossRef]
  26. Y. Huang, Y. Xu, and A. Yariv, Appl. Phys. Lett. 85, 5182 (2004). [CrossRef]
  27. L. Scolari, “Liquid crystals in photonic crystal fibers: fabrication, characterization and devices,” Ph.D. dissertation (Technical University of Denmark, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited