OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 4 — Feb. 15, 2014
  • pp: 793–796

High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure

Zhe Huang, Edward P. J. Parrott, Hongkyu Park, Hau Ping Chan, and Emma Pickwell-MacPherson  »View Author Affiliations

Optics Letters, Vol. 39, Issue 4, pp. 793-796 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A thin-film terahertz polarizer is proposed and realized via a tunable bilayer metal wire-grid structure to achieve high extinction ratios and good transmission. The polarizer is fabricated on top of a thin silica layer by standard micro-fabrication techniques to eliminate the multireflection effects. The tunable alignment of the bilayer aluminum-wire grid structure enables tailoring of the extinction ratio and transmission characteristics. Using terahertz time-domain spectroscopy (THz-TDS), a fabricated polarizer is characterized, with extinction ratios greater than 50 dB and transmission losses below 1 dB reported in the 0.2–1.1 THz frequency range. These characteristics can be improved by further tuning the polarizer parameters such as the pitch, metal film thickness, and lateral displacement.

© 2014 Optical Society of America

OCIS Codes
(310.4165) Thin films : Multilayer design
(300.6495) Spectroscopy : Spectroscopy, teraherz
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Thin Films

Original Manuscript: November 13, 2013
Revised Manuscript: December 21, 2013
Manuscript Accepted: December 29, 2013
Published: February 5, 2014

Zhe Huang, Edward P. J. Parrott, Hongkyu Park, Hau Ping Chan, and Emma Pickwell-MacPherson, "High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure," Opt. Lett. 39, 793-796 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photon. Rev. 43, 124 (2010).
  2. E. Pickwell and V. P. Wallace, J. Phys. D 39, R301 (2006). [CrossRef]
  3. J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, J. Pharm. Pharmacol. 59, 209 (2007). [CrossRef]
  4. A. Siemion, A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwiński, F. Garet, J.-L. Coutaz, and M. Sypek, Opt. Lett. 37, 4320 (2012). [CrossRef]
  5. B. Scherger, C. Jördens, and M. Koch, Opt. Express 19, 4528 (2011). [CrossRef]
  6. C. W. Berry and M. Jarrahi, J. Infrared Millim. Terahz. Waves 33, 127 (2011).
  7. B. S.-Y. Ung, B. Weng, R. Shepherd, D. Abbott, and C. Fumeaux, Opt. Mater. Express 3, 1242 (2013). [CrossRef]
  8. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, Phys. Rev. B 78, 241103 (2008). [CrossRef]
  9. S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, Opt. Express 18, 12168 (2010). [CrossRef]
  10. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, Opt. Express 19, 24884 (2011). [CrossRef]
  11. H. Park, E. P. J. Parrott, Z. Huang, H. P. Chan, and E. Pickwell-MacPherson, Appl. Phys. Lett. 101, 121108 (2012). [CrossRef]
  12. F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-MacPherson, J. Infrared Milli. Terahz. Waves 34, 489 (2013).
  13. J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, Nano Lett. 11, 4227 (2011). [CrossRef]
  14. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, Opt. Lett. 33, 1174 (2008). [CrossRef]
  15. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, Opt. Lett. 34, 274 (2009). [CrossRef]
  16. A. Wojdyla and G. Gallot, Opt. Express 19, 14099 (2011). [CrossRef]
  17. L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, Nano Lett. 12, 787 (2012). [CrossRef]
  18. Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, IEEE Photon. Technol. Lett. 25, 81 (2013). [CrossRef]
  19. A. Partanen, J. Väyrynen, S. Hassinen, H. Tuovinen, J. Mutanen, T. Itkonen, P. Silfsten, P. Pääkkönen, M. Kuittinen, K. Mönkkönen, and T. Venäläinen, Appl. Opt. 51, 8360 (2012). [CrossRef]
  20. K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, Opt. Lett. 36, 2665 (2011). [CrossRef]
  21. L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, Appl. Phys. Lett. 101, 011101 (2012). [CrossRef]
  22. K. Shiraishi, S. Oyama, and C. S. Tsai, J. Lightwave Technol. 29, 670 (2011). [CrossRef]
  23. M. B. Johnston and J. Lloyd-Hughes, in Terahertz Spectroscopy and Imaging, K.-E. Peiponen, J. A. Zeitler, and M. Kuwata-Gonokami, eds. (Springer-Verlag, 2013), pp. 254–255.
  24. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, Opt. Express 14, 2323 (2006). [CrossRef]
  25. J. S. Cetnar, J. R. Middendorf, and E. R. Brown, Appl. Phys. Lett. 100, 231912 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited