OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 4 — Feb. 15, 2014
  • pp: 857–860

High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber

Victor Lambin Iezzi, Sébastien Loranger, Mikaël Marois, and Raman Kashyap  »View Author Affiliations


Optics Letters, Vol. 39, Issue 4, pp. 857-860 (2014)
http://dx.doi.org/10.1364/OL.39.000857


View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In an effort to reduce the cost of sensing systems and make them more compact and flexible, Brillouin scattering has been demonstrated as a useful tool, especially for distributed temperature and strain sensing (DTSS), with a resolution of a few centimeters over several tens of kilometers of fiber. However, sensing is limited by the Brillouin frequency shift’s sensitivity to these parameters, which are of the order of 1.3MHz/°C and of 0.05MHz/με for standard fiber. In this Letter, we demonstrate a new and simple technique for enhancing the sensitivity of sensing by using higher-orders Stokes shifts with stimulated Brillouin scattering (SBS). By this method, we multiply the sensitivity of the sensor by the number of the Stokes order used, enhanced by six-fold, therefore reaching a sensitivity of 7MHz/°C, and potentially 0.30MHz/με. To do this, we place the test fiber within a cavity to produce a frequency comb. Based on a reference multiorder SBS source for heterodyning, this system should provide a new distributed sensing technology with significantly better resolution at a potentially lower cost than currently available DTSS systems.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(290.5900) Scattering : Scattering, stimulated Brillouin
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(280.5475) Remote sensing and sensors : Pressure measurement
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: November 1, 2013
Revised Manuscript: December 23, 2013
Manuscript Accepted: January 7, 2014
Published: February 6, 2014

Citation
Victor Lambin Iezzi, Sébastien Loranger, Mikaël Marois, and Raman Kashyap, "High-sensitivity temperature sensing using higher-order Stokes stimulated Brillouin scattering in optical fiber," Opt. Lett. 39, 857-860 (2014)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-39-4-857


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997). [CrossRef]
  2. S. Le Floch and P. Cambon, Opt. Commun. 219, 395 (2003). [CrossRef]
  3. V. Lambin-Iezzi, S. Loranger, M. Saad, and R. Kashyap, J. Non-Cryst. Solids 359, 65 (2013). [CrossRef]
  4. E. J. Miller, M. D. Skeldon, and R. W. Boyd, Appl. Opt. 28, 92 (1989). [CrossRef]
  5. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, Nat. Phys. 8, 203 (2012). [CrossRef]
  6. M. D. Pelusi, A. Fu, and B. J. Eggleton, Opt. Express 18, 9435 (2010). [CrossRef]
  7. M. González-Herráez, K.-Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005). [CrossRef]
  8. S. Loranger, V. Lambin-Iezzi, and R. Kashyap, Opt. Express 20, 19455 (2012). [CrossRef]
  9. X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 19, 141 (1994). [CrossRef]
  10. K. Hotate and S. S. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003). [CrossRef]
  11. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, J. Opt. Soc. Am. B 22, 1321 (2005). [CrossRef]
  12. T. Horiguchi and M. Tateda, Opt. Lett. 14, 408 (1989). [CrossRef]
  13. J. Dakin, D. Pratt, G. Bibby, and J. Ross, Electron. Lett. 21, 569 (1985). [CrossRef]
  14. M. Froggatt and J. Moore, Appl. Opt. 37, 1735 (1998). [CrossRef]
  15. Y. Sano and T. Yoshino, J. Lightwave Technol. 21, 132 (2003). [CrossRef]
  16. W. Li, X. Bao, Y. Li, and L. Chen, Opt. Express 16, 21616 (2008). [CrossRef]
  17. F. Wang, X. Zhang, Y. Lu, R. Dou, and X. Bao, Meas. Sci. Technol. 20, 025202 (2009). [CrossRef]
  18. Y. Dong, H. Zhang, L. Chen, and X. Bao, Appl. Opt. 51, 1229 (2012). [CrossRef]
  19. X. Bao and L. Chen, Sensors 11, 4152 (2011). [CrossRef]
  20. Y. Song, L. Zhan, J. Ji, Y. Su, Q. Ye, and Y. Xia, Opt. Lett. 30, 486 (2005). [CrossRef]
  21. Z. Zhang, L. Zhan, and Y. Xia, Opt. Express 15, 9731 (2007). [CrossRef]
  22. Y. Lu, Z. Qin, P. Lu, D. Zhou, L. Chen, and X. Bao, IEEE Photon. Technol. Lett. 25, 1050 (2013). [CrossRef]
  23. S. M. Maughan, H. H. Kee, and T. P. Newson, Meas. Sci. Technol. 12, 834 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited