OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 4 — Feb. 15, 2014
  • pp: 869–872

Axial nanoscale localization by normalized total internal reflection fluorescence microscopy

Marcelina Cardoso Dos Santos, Régis Déturche, Cyrille Vézy, and Rodolphe Jaffiol  »View Author Affiliations

Optics Letters, Vol. 39, Issue 4, pp. 869-872 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple modification of a standard total internal reflection fluorescence microscope to achieve nanometric axial resolution, typically 10nm. The technique is based on a normalization of total internal reflection images by conventional epi-illumination images. We demonstrate the potential of our method to study the adhesion of phopholipid giant unilamellar vesicles.

© 2014 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:

Original Manuscript: November 20, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 30, 2013
Published: February 6, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Marcelina Cardoso Dos Santos, Régis Déturche, Cyrille Vézy, and Rodolphe Jaffiol, "Axial nanoscale localization by normalized total internal reflection fluorescence microscopy," Opt. Lett. 39, 869-872 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Hu, L. Ji, K. T. Applegate, G. Danuser, and C. M. Waterman-Storer, Science 315, 111 (2007). [CrossRef]
  2. A. Hassanzadeh, S. Armstrong, S. F. Dixon, and S. Mittler, Appl. Phys. Lett. 94, 033503 (2009). [CrossRef]
  3. D. Axelrod, E. H. Hellen, and R. M. Fulbright, in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed., (Plenum, 1992), Vol. 3, pp. 289–343.
  4. W. Lukosz and R. E. Kunz, J. Opt. Soc. Am. 67, 1607 (1977). [CrossRef]
  5. L. Limozin and K. Sengupta, Biophys. J. 93, 3300 (2007). [CrossRef]
  6. C. Vézy, G. Massiera, and A. Viallat, Soft Matter 3, 844 (2007).
  7. A. L. Stout and D. Axelrod, Appl. Opt. 28, 5237 (1989). [CrossRef]
  8. J. Mertz, Introduction to Optical Microscopy (Roberts & Company, 2010).
  9. J. S. Burmeister, G. A. Truskey, and W. M. Reichert, J. Microsc. 173, 39 (1994). [CrossRef]
  10. M. Abkarian and A. Viallat, Biophys. J. 89, 1055 (2005). [CrossRef]
  11. C. Boutin, R. Jaffiol, J. Plain, and P. Royer, J. Fluoresc. 18, 1115 (2008). [CrossRef]
  12. L. Limozin and K. Sengupta, Chem. Phys. Chem. 10, 2752 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited