OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 4 — Feb. 15, 2014
  • pp: 880–883

Measurement-device-independent quantum key distribution with modified coherent state

Mo Li, Chun-Mei Zhang, Zhen-Qiang Yin, Wei Chen, Shuang Wang, Guang-Can Guo, and Zheng-Fu Han  »View Author Affiliations

Optics Letters, Vol. 39, Issue 4, pp. 880-883 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The measurement-device-independent quantum key distribution (MDI-QKD) protocol has been proposed for the purpose of removing the detector side channel attacks. Due to the multiphoton events of coherent states sources, real-life implementations of MDI-QKD protocol must employ decoy states to beat the photon-number-splitting attack. Decoy states for MDI-QKD based on the weak coherent states (WCSs) have been studied recently. In this Letter, we propose to perform MDI-QKD protocol with modified coherent states (MCS) sources. We simulate the performance of MDI-QKD with the decoy states based on MCS sources. And our simulation indicates that both the secure-key rate and transmission distance can be improved evidently with MCS sources. The physics behind this improvement is that the probability of multiphoton events of the MCS is lower than that of WCSs while at the same time the probability of single-photon is higher.

© 2014 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: November 12, 2013
Revised Manuscript: January 3, 2014
Manuscript Accepted: January 3, 2014
Published: February 10, 2014

Mo Li, Chun-Mei Zhang, Zhen-Qiang Yin, Wei Chen, Shuang Wang, Guang-Can Guo, and Zheng-Fu Han, "Measurement-device-independent quantum key distribution with modified coherent state," Opt. Lett. 39, 880-883 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175–179.
  2. H.-K. Lo and H. F. Chau, Science 283, 2050 (1999). [CrossRef]
  3. P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000). [CrossRef]
  4. V. Makarov, A. Anisimov, and J. Skaar, Phys. Rev. A 74, 022313 (2006). [CrossRef]
  5. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, Quantum Inf. Comput. 7, 073 (2007).
  6. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photonics 4, 686 (2010). [CrossRef]
  7. H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, Phys Rev A 84, 062308 (2011).
  8. N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, Phys. Rev. Lett. 107, 110501 (2011). [CrossRef]
  9. H.-K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012). [CrossRef]
  10. S. L. Braunstein and S. Pirandola, Phys. Rev. Lett. 108, 130502 (2012). [CrossRef]
  11. P. Chan, J. A. Slater, I. Lucio-Martinez, A. Rubenok, and W. Tittel, “Modeling a measurement-device-independent quantum key distribution system,” arXiv:1204.0738 (2012).
  12. Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, Q. Zhang, and J.-W. Pan, Phys. Rev. Lett. 111, 130502 (2013). [CrossRef]
  13. Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, “"Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” arXiv:1306.6134 (2013).
  14. M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, and E. Sundberg, Opt. Express 4, 383 (1999). [CrossRef]
  15. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinde, New J. Phys. 4, 41 (2002). [CrossRef]
  16. H. Kosaka, A. Tomita, Y. Nambu, T. Kimura, and K. Nakamura, Electron. Lett. 39, 1199 (2003). [CrossRef]
  17. C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84, 3762 (2004). [CrossRef]
  18. X.-F. Mo, B. Zhu, Z.-F. Han, Y.-Z. Gui, and G.-C. Guo, Opt. Lett. 30, 2632 (2005). [CrossRef]
  19. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000). [CrossRef]
  20. N. Lütkenhaus, Phys. Rev. A 61, 052304 (2000). [CrossRef]
  21. W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003). [CrossRef]
  22. H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005). [CrossRef]
  23. X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005). [CrossRef]
  24. X.-B. Wang, Phys. Rev. A 87, 012320 (2013). [CrossRef]
  25. Z.-Q. Yin, C.-H. Fred Fung, X. Ma, C.-M. Zhang, H.-W. Li, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 88, 062322 (2013). [CrossRef]
  26. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, Phys. Rev. Lett. 96, 070502 (2006). [CrossRef]
  27. C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, Phys. Rev. Lett. 98, 010505 (2007). [CrossRef]
  28. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, Phys. Rev. Lett. 98, 010503 (2007). [CrossRef]
  29. Z. L. Yuan, A. W. Sharpe, and A. J. Shields, Appl. Phys. Lett. 90011118 (2007). [CrossRef]
  30. T. Schmitt-Manderbach, H. Weier, M. Frst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, Phys. Rev. Lett. 98, 010504 (2007). [CrossRef]
  31. Z.-Q. Yin, Z.-F. Han, W. Chen, F.-X. Xu, Q.-L. Wu, and G.-C. Guo, Chin. Phys. Lett 25, 3547 (2008). [CrossRef]
  32. Y.-J. Lu and Z.-Y. Ou, Phys. Rev. Lett 88, 023601 (2001). [CrossRef]
  33. Z.-Q. Yin, Z.-F. Han, F.-W. Sun, and G.-C. Guo, Phys. Rev. A 76, 014304 (2007). [CrossRef]
  34. X. Ma and M. Razavi, Phys. Rev. A 86, 062319 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited