OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 4 — Feb. 15, 2014
  • pp: 922–924

Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG

Weilin Liu and Jianping Yao  »View Author Affiliations

Optics Letters, Vol. 39, Issue 4, pp. 922-924 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium–ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.

© 2014 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(350.4010) Other areas of optics : Microwaves
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 20, 2013
Revised Manuscript: December 28, 2013
Manuscript Accepted: December 31, 2013
Published: February 10, 2014

Weilin Liu and Jianping Yao, "Ultra-wideband microwave photonic phase shifter with a 360° tunable phase shift based on an erbium-ytterbium co-doped linearly chirped FBG," Opt. Lett. 39, 922-924 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yamagashi, M. Ishikawa, T. Tsukahara, and S. Date, CICC Digest of Technical Papers (1995), p. 319.
  2. J.-L. Kuo, Y.-F. Lu, T.-Y. Huang, Y.-L. Chang, Y.-K. Hsieh, P.-J. Peng, I.-C. Chang, T.-C. Tsai, K.-Y. Kao, W.-H. Hsiung, J. Wang, Y. A. Hsu, K.-Y. Lin, H.-C. Lu, Y.-C. Lin, L.-H. Lu, T.-W. Huang, R.-B. Wu, and H. Wang, IEEE Trans. Microwave Theory Tech. 60, 743 (2012).
  3. J. F. Coward, T. K. Yee, C. H. Chalfant, and P. H. Chang, J. Lightwave Technol. 11, 2201 (1993). [CrossRef]
  4. M. Attygalle and D. Stepanov, Opt. Express 20, 18025 (2012).
  5. H. Jacobs and M. M. Chrepta, IEEE Trans. Microwave Theory Tech. 22, 411 (1974).
  6. A. B. Ustinov, G. Srinivasan, and B. A. Kalinikos, Appl. Phys. Lett. 90, 031913 (2007). [CrossRef]
  7. Y. Dong, H. He, and W. Hu, Opt. Lett. 32, 745 (2007). [CrossRef]
  8. M. R. Fisher and S. L. Chuang, IEEE Photon. Technol. Lett. 18, 1714 (2006). [CrossRef]
  9. W. Xue, S. Sales, J. Capmany, and J. Mørk, Opt. Lett. 34, 929 (2009). [CrossRef]
  10. H. Shahoei and J. P. Yao, Opt. Express 20, 14009 (2012). [CrossRef]
  11. A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006). [CrossRef]
  12. W. Liu, W. Li, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 1107 (2013). [CrossRef]
  13. M. K. Davis, M. J. Digonnet, and R. Pantell, J. Lightwave Technol. 16, 1013 (2003). [CrossRef]
  14. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, Opt. Lett. 19, 2027 (1994). [CrossRef]
  15. Y. Liu, J. P. Yao, X. Dong, and J. Yang, Opt. Eng. 41, 740 (2002). [CrossRef]
  16. M. Bernier, Y. Sheng, and R. Vallée, Opt. Express 17, 3285 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited