OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 4 — Feb. 15, 2014
  • pp: 973–976

Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement

Youqiao Ma, Gerald Farrell, Yuliya Semenova, and Qiang Wu  »View Author Affiliations

Optics Letters, Vol. 39, Issue 4, pp. 973-976 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, a novel waveguide based on hybrid surface plasmon polaritons (HSPPs) is proposed and numerically analyzed. This waveguide consists of two dielectric nanowires placed on both sides of a nanowedge-patterned metal film, which can confine light in the ultra-deep-subwavelength region (ranging from λ2/4000 to λ2/400) with a long propagation length (ranging from 1200 to 3500 μm). Compared to a previous HSPPs waveguide without the nanowedges, with the same propagation length, our proposed structure has much higher mode confinement with 1 order of magnitude smaller normalized mode area. An investigation of the effect of structural perturbations indicates that our proposed waveguide also has good tolerance of fabrication errors. The proposed waveguide could be an interesting alternative structure to realize nanolasers and optical trapping.

© 2014 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: December 9, 2013
Revised Manuscript: January 10, 2014
Manuscript Accepted: January 12, 2014
Published: February 11, 2014

Youqiao Ma, Gerald Farrell, Yuliya Semenova, and Qiang Wu, "Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement," Opt. Lett. 39, 973-976 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kirchain and L. Kimerling, Nat. Photonics 1, 303 (2007). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef]
  3. Z. Han, A. Y. Elezzabi, and V. Van, Opt. Lett. 35, 502 (2010). [CrossRef]
  4. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, J. Opt. Soc. Am. B 28, 1596 (2011). [CrossRef]
  5. J. W. Mu, L. Chen, X. Li, W. P. Huang, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 103, 131107 (2013). [CrossRef]
  6. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008). [CrossRef]
  7. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, Opt. Express 19, 22417 (2011). [CrossRef]
  8. L. Chen, T. Zhang, X. Li, and W. P. Huang, Opt. Express 20, 20535 (2012). [CrossRef]
  9. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009). [CrossRef]
  10. X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. Zhang, Nano Lett. 11, 321 (2011). [CrossRef]
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  12. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 100, 023901 (2008). [CrossRef]
  13. T. Ogawa, D. F. P. Pile, T. Okamoto, M. Haraguchi, M. Kukui, and D. K. Gramotnev, J. Appl. Phys. 104, 033102 (2008). [CrossRef]
  14. T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, Nat. Mater. 3, 524 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited