OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 4 — Feb. 15, 2014
  • pp: 977–980

Temperature effects in optical fiber dispersion compensation modules

Mikhail Shenouda and David Yevick  »View Author Affiliations

Optics Letters, Vol. 39, Issue 4, pp. 977-980 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (419 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Differential group delay measurements of a fiber-based dispersion compensation module under different controlled temperature variations experience long birefringence relaxation times (>10h) in response to temperature changes. These are interpreted here qualitatively with a stress strain behavioral model based on silica’s viscoelastic property.

© 2014 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2400) Fiber optics and optical communications : Fiber properties
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(230.2035) Optical devices : Dispersion compensation devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 23, 2013
Revised Manuscript: January 1, 2014
Manuscript Accepted: January 1, 2014
Published: February 11, 2014

Mikhail Shenouda and David Yevick, "Temperature effects in optical fiber dispersion compensation modules," Opt. Lett. 39, 977-980 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, Photon. Technol. Lett. 3, 68 (1991). [CrossRef]
  2. M. Brodsky, J. C. Martinez, N. J. Frigo, and A. Sirenko, “Dispersion compensation module as a polarization hinge,” 31st European Conference on Optical Communication, September 25–29, 2005, Vol. 3, pp. 335–336.
  3. M. Brodsky, N. J. Frigo, M. Boroditsky, and M. Tur, J. Lightwave Technol. 24, 4584 (2006). [CrossRef]
  4. T. Geisler and P. Kristensen, “Polarization properties of DCMs: thermal variations,” in Optical Fiber Communication Conference, San Diego, California, 2009, paper OWD3.
  5. D. Goelz, R. Leppla, S. Salaun, R. Glatty, S. Boehm, and P. Meissner, Proc. SPIE 6388, 63880K (2006).
  6. M. Reimer and D. Yevick, Opt. Lett. 31, 2399 (2006). [CrossRef]
  7. M. Brodsky, P. Magill, and N. J. Frigo, Photon. Technol. Lett. 16, 209 (2004). [CrossRef]
  8. G. W. Scherer, Relaxation in Glass and Composites (Wiley, 1986).
  9. S. C. Rashleigh and R. Ulrich, Opt. Lett. 5, 354 (1980). [CrossRef]
  10. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Opt. Lett. 5, 273 (1980). [CrossRef]
  11. D. Gupta, A. Kumar, and K. Thyagarajan, Opt. Commun. 263, 36 (2006). [CrossRef]
  12. A. Galtarossa and L. Palmieri, Opt. Lett. 25, 384 (2000). [CrossRef]
  13. A. Yariv and P. Yeh, Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007).
  14. C.-L. Chen, Foundations for Guided-Wave Optics (Wiley, 2007), Chap. 11.
  15. G. W. Morey, The Properties of Glass, 1st ed. (Waverly, 1938).
  16. C. J. Phillips, Glass: The Miracle Maker, 2nd ed. (Pitman, 1941).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited