OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 5 — Mar. 1, 2014
  • pp: 1238–1241

Schlieren confocal microscopy for phase-relief imaging

Hao Xie, Dayong Jin, Junjie Yu, Tong Peng, Yichen Ding, Changhe Zhou, and Peng Xi  »View Author Affiliations

Optics Letters, Vol. 39, Issue 5, pp. 1238-1241 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a simple phase-sensitive microscopic technique capable of imaging the phase gradient of a transparent specimen, based on the Schlieren modulation and confocal laser scanning microscopy (CLSM). The incident laser is refracted by the phase gradient of the specimen and excites a fluorescence plate behind the specimen to create a secondary illumination; then the fluoresence is modulated by a partial obstructor before entering the confocal pinhole. The quantitative relationship between the image intensity and the sample phase gradient can be derived. This setup is very easy to be adapted to current confocal setups, so that multimodality fluorescence/structure images can be obtained within a single system.

© 2014 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy

ToC Category:

Original Manuscript: October 10, 2013
Revised Manuscript: December 9, 2013
Manuscript Accepted: January 13, 2014
Published: February 25, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Hao Xie, Dayong Jin, Junjie Yu, Tong Peng, Yichen Ding, Changhe Zhou, and Peng Xi, "Schlieren confocal microscopy for phase-relief imaging," Opt. Lett. 39, 1238-1241 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Zernike, Physica 9, 686 (1942). [CrossRef]
  2. G. Nomarski, J. Phys. Radium 16, 9S (1955).
  3. C. Preza, D. L. Snyder, and J.-A. Conchello, J. Opt. Soc. Am. A 16, 2185 (1999). [CrossRef]
  4. C. J. Cogswell and C. Sheppard, J. Microsc. 165, 81 (1992). [CrossRef]
  5. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, Opt. Lett. 31, 775 (2006). [CrossRef]
  6. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 13, 689 (2005). [CrossRef]
  7. M. Davidson and M. Abramowitz, in Encyclopedia of Imaging Science and Technology, J. Honak, ed. (Wiley, 2002).
  8. J. G. Dodd, Appl. Opt. 16, 470 (1977). [CrossRef]
  9. D. Axelrod, Cell Biophys. 3, 167 (1981).
  10. R. Yi, K. K. Chu, and J. Mertz, Opt. Express 14, 5191 (2006). [CrossRef]
  11. R. Hoffman and L. Gross, Appl. Opt. 14, 1169 (1975). [CrossRef]
  12. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 1995).
  13. Y. Ding, H. Xie, T. Peng, Y. Lu, D. Jin, J. Teng, Q. Ren, and P. Xi, Opt. Express 20, 14100 (2012). [CrossRef]
  14. M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  15. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984), Chap. 3, pp. 37–42.
  16. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, Phys. Med. Biol. 41, 369 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited