OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 5 — Mar. 1, 2014
  • pp: 1286–1289

Error analysis of moment-based modal wavefront sensing

Hanshin Lee  »View Author Affiliations

Optics Letters, Vol. 39, Issue 5, pp. 1286-1289 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The shape of a focus-modulated point spread function (PSF) is used as a quick visual assessment tool of aberration modes in the PSF. Further analysis in terms of shape moments can permit quantifying the modal coefficients with an accuracy comparable to that of typical wavefront sensors. In this Letter, the error of the moment-based wavefront sensing is analytically described in terms of the pixelation and photon/readout noise. All components highly depend on the (unknown) PSF shape but can be estimated from the measured PSF sampled at a reasonable spatial resolution and photon count. Numerical simulations verified that the models consistently predicted the behavior of the modal estimation error of the moment-based wavefront sensing.

© 2014 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(080.1010) Geometric optics : Aberrations (global)
(110.2960) Imaging systems : Image analysis
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(220.4840) Optical design and fabrication : Testing

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 4, 2013
Revised Manuscript: January 14, 2014
Manuscript Accepted: January 17, 2014
Published: February 26, 2014

Hanshin Lee, "Error analysis of moment-based modal wavefront sensing," Opt. Lett. 39, 1286-1289 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Suiter, Star Testing Astronomical Telescopes, 2nd ed. (Willmann-Bell, 2008).
  2. J. R. Fienup, Appl. Opt. 21, 2758 (1982). [CrossRef]
  3. F. Roddier, Appl. Opt. 29, 1402 (1990). [CrossRef]
  4. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford, 1998).
  5. R. Gonsalves, Opt. Lett. 26, 684 (2001). [CrossRef]
  6. C. U. Keller, V. Korkiakoski, N. Doelman, R. Fraanje, R. Andrei, and M. Verhaegen, Proc. SPIE 8447, 844721 (2012). [CrossRef]
  7. J. Dolne, P. Menicucci, D. Miccolis, K. Widen, H. Seiden, F. Vachss, and H. Schall, Appl. Opt. 48, A30 (2009). [CrossRef]
  8. S. Meimon, T. Fusco, and L. Mugnier, Opt. Lett. 35, 3036 (2010). [CrossRef]
  9. M. R. Teague, J. Opt. Soc. Am. 72, 1199 (1982). [CrossRef]
  10. H. Lee, Opt. Lett. 36, 1503 (2011). [CrossRef]
  11. H. Lee and G. J. Hill, Proc. SPIE 8450, 845019 (2012).
  12. H. Lee, G. J. Hill, S. E. Tuttle, and B. L. Vattiat, Proc. SPIE 8450, 845019 (2012).
  13. R. J. Noll, J. Opt. Soc. Am. 66, 207 (1976). [CrossRef]
  14. W. H. Press, S. A. Teukolsky, W. T. Vitterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge, 1999).
  15. E. M. Johansson and D. T. Gavel, Proc. SPIE 2200, 372 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited