OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 5 — Mar. 1, 2014
  • pp: 1302–1305

Huge local electric field enhancement in hybrid plasmonic arrays

Fei Zhou, Ye Liu, and Weiping Cai  »View Author Affiliations

Optics Letters, Vol. 39, Issue 5, pp. 1302-1305 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this Letter, a novel hybrid nanoparticle array with huge local electric field intensity enhancement is proposed theoretically. The hybrid array is constructed by replacing some nanodisks with nanobowties from a perfect nanodisk square array. In our structure, the nanodisk array, which acts as a two-dimensional grating, can efficiently excite surface plasmon polaritons (SPPs) modes, whose electric field is much larger than the incident light. Then the SPPs mode excites the localized surface plasmon resonance (LSPR) mode of the nanobowties. When the resonant peaks of the array and the nanobowties coincide, the nanobowties are strongly excited, and the maximum intensity enhancement factor (E/E0)2 as large as 4.2×106 is achieved. A two-step excitation model is proposed to help us to understand the underlying physical mechanism for this enhancement. This hybrid array structure shows great potential in highly sensitive surface enhanced Raman scattering and fluorescence detection.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: October 17, 2013
Revised Manuscript: January 23, 2014
Manuscript Accepted: January 24, 2014
Published: February 27, 2014

Fei Zhou, Ye Liu, and Weiping Cai, "Huge local electric field enhancement in hybrid plasmonic arrays," Opt. Lett. 39, 1302-1305 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, Nature 453, 757 (2008). [CrossRef]
  2. C. D. Geddes, D. Roll, A. Parfenov, and J. R. Lakowicz, Biophys. J. 84, 477a (2003).
  3. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, Anal. Chem. 77, 338a (2005). [CrossRef]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997). [CrossRef]
  5. R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000). [CrossRef]
  6. G. R. Souza, D. R. Christianson, F. I. Staquicini, M. G. Ozawa, E. Y. Snyder, R. L. Sidman, J. H. Miller, W. Arap, and R. Pasqualini, Proc. Natl. Acad. Sci. U.S.A. 103, 1215 (2006). [CrossRef]
  7. N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004). [CrossRef]
  8. B. Auguie and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008). [CrossRef]
  9. R. K. Jain and R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983). [CrossRef]
  10. Y. Xia, S. E. Skrabalak, J. Chen, L. Au, X. Lu, and X. Li, Adv. Mater. 19, 3177 (2007). [CrossRef]
  11. J. X. Fang, S. Y. Du, S. Lebedkin, Z. Y. Li, R. Kruk, M. Kappes, and H. Hahn, Nano Lett. 10, 5006 (2010). [CrossRef]
  12. W. Q. Zhu, M. G. Banaee, D. X. Wang, Y. Z. Chu, and K. B. Crozier, Small 7, 1761 (2011). [CrossRef]
  13. Y. Z. Chu and K. B. Crozier, Opt. Lett. 34, 244 (2009). [CrossRef]
  14. J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, Opt. Express 17, 8669 (2009). [CrossRef]
  15. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, Nano Lett. 10, 4952 (2010). [CrossRef]
  16. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  17. F. J. G. de Abajo, Rev. Mod. Phys. 79, 1267 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited